inverse of f(x)=-x-2
|
inverse\:f(x)=-x-2
|
domain of y= 1/x
|
domain\:y=\frac{1}{x}
|
slope of-1/4
|
slope\:-\frac{1}{4}
|
slope intercept of-3y=4x+11
|
slope\:intercept\:-3y=4x+11
|
inverse of f(x)=-5/2
|
inverse\:f(x)=-\frac{5}{2}
|
inverse of f(x)=-x^2+6x-10
|
inverse\:f(x)=-x^{2}+6x-10
|
range of f(x)=(x+4)/(x^2-9)
|
range\:f(x)=\frac{x+4}{x^{2}-9}
|
domain of f(x)=2sqrt(x^2)
|
domain\:f(x)=2\sqrt{x^{2}}
|
inverse of f(x)= 3/4 x+1
|
inverse\:f(x)=\frac{3}{4}x+1
|
critical points of f(x)=xln(5x)
|
critical\:points\:f(x)=xln(5x)
|
extreme points of f(x)=3x^4+12x^3
|
extreme\:points\:f(x)=3x^{4}+12x^{3}
|
asymptotes of (5e^x)/(e^x-9)
|
asymptotes\:\frac{5e^{x}}{e^{x}-9}
|
domain of f(x)=(x-2)\div (x+3)
|
domain\:f(x)=(x-2)\div\:(x+3)
|
shift-1/7 sin(5x+(pi)/2)
|
shift\:-\frac{1}{7}\sin(5x+\frac{\pi}{2})
|
inflection points of f(x)=(-7)/(-2x-4)
|
inflection\:points\:f(x)=\frac{-7}{-2x-4}
|
inverse of f(x)=(2x+1)/(1-3x)
|
inverse\:f(x)=\frac{2x+1}{1-3x}
|
f(x)=sqrt(x+4)
|
f(x)=\sqrt{x+4}
|
inverse of f(x)=x^2-5,x>= 0
|
inverse\:f(x)=x^{2}-5,x\ge\:0
|
intercepts of f(x)=(x^2+x-2)/(2x^2-2)
|
intercepts\:f(x)=\frac{x^{2}+x-2}{2x^{2}-2}
|
inverse of ((x+2)(x+3))/(2(x+2))
|
inverse\:\frac{(x+2)(x+3)}{2(x+2)}
|
slope of 5p+2q=4
|
slope\:5p+2q=4
|
domain of (x-6)/(x^2-36)
|
domain\:\frac{x-6}{x^{2}-36}
|
midpoint (48,100),(42,125)
|
midpoint\:(48,100),(42,125)
|
domain of (x-5)/(x^2+25)-3x
|
domain\:\frac{x-5}{x^{2}+25}-3x
|
domain of f(x)=-3x^2+5
|
domain\:f(x)=-3x^{2}+5
|
extreme points of f(x)=x^2-2x+7
|
extreme\:points\:f(x)=x^{2}-2x+7
|
domain of f(x)=-1/(sqrt(x))
|
domain\:f(x)=-\frac{1}{\sqrt{x}}
|
domain of (x^2-4)/(3x-6)
|
domain\:\frac{x^{2}-4}{3x-6}
|
intercepts of x^2-4x-12
|
intercepts\:x^{2}-4x-12
|
extreme points of f(x)=(x+5)^{2/3}-2
|
extreme\:points\:f(x)=(x+5)^{\frac{2}{3}}-2
|
symmetry-x^2-8x-17
|
symmetry\:-x^{2}-8x-17
|
periodicity of f(x)=2sin(-2x+55665)
|
periodicity\:f(x)=2\sin(-2x+55665)
|
inverse of 2x^3-5
|
inverse\:2x^{3}-5
|
asymptotes of y=3^x
|
asymptotes\:y=3^{x}
|
slope intercept of x+4y=12
|
slope\:intercept\:x+4y=12
|
asymptotes of (x+2)/(x^2-4)
|
asymptotes\:\frac{x+2}{x^{2}-4}
|
intercepts of f(x)=1+x-x^2-x^3
|
intercepts\:f(x)=1+x-x^{2}-x^{3}
|
perpendicular 8x-3y=25,\at (5,-5)
|
perpendicular\:8x-3y=25,\at\:(5,-5)
|
domain of f(x)=sqrt(3+7x)
|
domain\:f(x)=\sqrt{3+7x}
|
extreme points of f(x)=-3x^4+8x^3+18x^2
|
extreme\:points\:f(x)=-3x^{4}+8x^{3}+18x^{2}
|
slope of 3x-7y=21
|
slope\:3x-7y=21
|
intercepts of f(x)=-3x^2+3x-2
|
intercepts\:f(x)=-3x^{2}+3x-2
|
inverse of f(x)=10-1/(5x)
|
inverse\:f(x)=10-\frac{1}{5x}
|
domain of g(x)=x-6
|
domain\:g(x)=x-6
|
inverse of f(x)=(1/4)^x
|
inverse\:f(x)=(\frac{1}{4})^{x}
|
critical points of f(x)=3tan(x/2)
|
critical\:points\:f(x)=3\tan(\frac{x}{2})
|
inverse of f(x)=(4x)/(x+5)
|
inverse\:f(x)=\frac{4x}{x+5}
|
range of 2-sqrt(2-x)
|
range\:2-\sqrt{2-x}
|
inverse of f(x)=((x^3-2))/(x^3-1)
|
inverse\:f(x)=\frac{(x^{3}-2)}{x^{3}-1}
|
critical points of f(x)=(4t^2)/(4+t^3)
|
critical\:points\:f(x)=\frac{4t^{2}}{4+t^{3}}
|
perpendicular 5x-10y=1,(1/2 ,-2/7)
|
perpendicular\:5x-10y=1,(\frac{1}{2},-\frac{2}{7})
|
midpoint (4,-1),(-2,-3)
|
midpoint\:(4,-1),(-2,-3)
|
symmetry 2x^2-3x+6
|
symmetry\:2x^{2}-3x+6
|
symmetry y=x^2-3x-54
|
symmetry\:y=x^{2}-3x-54
|
domain of f(x)=-3\sqrt[3]{-6x+12}-18
|
domain\:f(x)=-3\sqrt[3]{-6x+12}-18
|
slope of-4,f(2-8)
|
slope\:-4,f(2-8)
|
critical points of cos(4x)
|
critical\:points\:\cos(4x)
|
domain of f(x)=(x+8)/(x^2-25)
|
domain\:f(x)=\frac{x+8}{x^{2}-25}
|
inverse of f(x)= 9/5 x-4
|
inverse\:f(x)=\frac{9}{5}x-4
|
inverse of f(x)=8-x^3
|
inverse\:f(x)=8-x^{3}
|
domain of f(x)= 1/(8-x)
|
domain\:f(x)=\frac{1}{8-x}
|
range of 3x^2+6
|
range\:3x^{2}+6
|
domain of-6x^2-4x
|
domain\:-6x^{2}-4x
|
distance (3,3)(8,8)
|
distance\:(3,3)(8,8)
|
asymptotes of f(x)=(x^2)/(x^4-256)
|
asymptotes\:f(x)=\frac{x^{2}}{x^{4}-256}
|
domain of (x-3)^2+1
|
domain\:(x-3)^{2}+1
|
frequency sin(40x)
|
frequency\:\sin(40x)
|
perpendicular y= 1/5 x+5(6,-4)
|
perpendicular\:y=\frac{1}{5}x+5(6,-4)
|
range of f(x)=sqrt(-x)+5
|
range\:f(x)=\sqrt{-x}+5
|
extreme points of f(x)=x^3+18x^2+11x-16
|
extreme\:points\:f(x)=x^{3}+18x^{2}+11x-16
|
slope intercept of y-1=9(x-1)
|
slope\:intercept\:y-1=9(x-1)
|
extreme points of x^2-5x+6
|
extreme\:points\:x^{2}-5x+6
|
domain of f(x)=5ln(x)
|
domain\:f(x)=5\ln(x)
|
domain of log_{3}(x-4)
|
domain\:\log_{3}(x-4)
|
inflection points of x/(x^2-4)
|
inflection\:points\:\frac{x}{x^{2}-4}
|
line y=2x-3
|
line\:y=2x-3
|
inverse of f(x)=11+\sqrt[3]{x}
|
inverse\:f(x)=11+\sqrt[3]{x}
|
domain of 5sqrt(x-4)
|
domain\:5\sqrt{x-4}
|
range of y=2x^2+20x+53
|
range\:y=2x^{2}+20x+53
|
domain of f(x)=-2x+5
|
domain\:f(x)=-2x+5
|
domain of x|x|
|
domain\:x|x|
|
asymptotes of (x^2-16)/(x^3-5x^2+4x)
|
asymptotes\:\frac{x^{2}-16}{x^{3}-5x^{2}+4x}
|
domain of sqrt(x+8)-9
|
domain\:\sqrt{x+8}-9
|
inverse of f(x)=5+6x
|
inverse\:f(x)=5+6x
|
inverse of f(x)= 1/5 x-3
|
inverse\:f(x)=\frac{1}{5}x-3
|
inverse of f(x)=5-3e^x
|
inverse\:f(x)=5-3e^{x}
|
asymptotes of (x^2)/(x^2+16)
|
asymptotes\:\frac{x^{2}}{x^{2}+16}
|
domain of ln(1/(x+1))
|
domain\:\ln(\frac{1}{x+1})
|
parity f(x)=-6x^4+3x^2
|
parity\:f(x)=-6x^{4}+3x^{2}
|
intercepts of f(x)=x+y=5
|
intercepts\:f(x)=x+y=5
|
inverse of f(x)=3+log_{2}(7x-10)
|
inverse\:f(x)=3+\log_{2}(7x-10)
|
domain of f(x)=(4x+2)/(x^2-4x-32)
|
domain\:f(x)=\frac{4x+2}{x^{2}-4x-32}
|
inflection points of f(x)=x^2sqrt(4-x)
|
inflection\:points\:f(x)=x^{2}\sqrt{4-x}
|
domain of f(x)=y=x^2
|
domain\:f(x)=y=x^{2}
|
inverse of f(x)= 2/3 x+1/2
|
inverse\:f(x)=\frac{2}{3}x+\frac{1}{2}
|
domain of (sqrt(2-x))
|
domain\:(\sqrt{2-x})
|
domain of f(x)=(3x+6)/x
|
domain\:f(x)=\frac{3x+6}{x}
|
parallel y=-2x-3
|
parallel\:y=-2x-3
|
inverse of f(x)= 1/x-5
|
inverse\:f(x)=\frac{1}{x}-5
|
critical points of f(x)=3x^2-9x
|
critical\:points\:f(x)=3x^{2}-9x
|