line (-6,)(,)
|
line\:(-6,)(,)
|
domain of f(x)=(-3+sqrt(4x+25))/2
|
domain\:f(x)=\frac{-3+\sqrt{4x+25}}{2}
|
extreme points of f(x)=4x^3-80x^2+300x
|
extreme\:points\:f(x)=4x^{3}-80x^{2}+300x
|
asymptotes of f(x)=(x^2)/(x^2+2)
|
asymptotes\:f(x)=\frac{x^{2}}{x^{2}+2}
|
asymptotes of ln(x+4)
|
asymptotes\:\ln(x+4)
|
domain of (x^2+x-2)/(x^2-3x-4)
|
domain\:\frac{x^{2}+x-2}{x^{2}-3x-4}
|
domain of f(x)=log_{4}(x-4)
|
domain\:f(x)=\log_{4}(x-4)
|
inverse of f(x)=5x+3
|
inverse\:f(x)=5x+3
|
inverse of f(x)=4x^2+8x-20
|
inverse\:f(x)=4x^{2}+8x-20
|
range of (x+1)^2-9
|
range\:(x+1)^{2}-9
|
perpendicular x+y=8
|
perpendicular\:x+y=8
|
inverse of f(x)=sqrt(x^2+4)
|
inverse\:f(x)=\sqrt{x^{2}+4}
|
domain of log_{4}((x-3)/x)
|
domain\:\log_{4}(\frac{x-3}{x})
|
domain of log_{4}(3^x)
|
domain\:\log_{4}(3^{x})
|
slope intercept of 4x+y=-2
|
slope\:intercept\:4x+y=-2
|
domain of f(x)=25x-18
|
domain\:f(x)=25x-18
|
intercepts of-1/12 x^2+2x+5
|
intercepts\:-\frac{1}{12}x^{2}+2x+5
|
slope of x=6y-7
|
slope\:x=6y-7
|
critical points of (0.22x)/(x^2+4)
|
critical\:points\:\frac{0.22x}{x^{2}+4}
|
intercepts of f(x)=y=x+3
|
intercepts\:f(x)=y=x+3
|
slope of 12x+3y-9=0
|
slope\:12x+3y-9=0
|
range of f(x)=4-2x^2
|
range\:f(x)=4-2x^{2}
|
inverse of f(x)=5x^3-6
|
inverse\:f(x)=5x^{3}-6
|
inverse of V=(23a^3)/3
|
inverse\:V=\frac{23a^{3}}{3}
|
inverse of 3x+5
|
inverse\:3x+5
|
domain of f(x)=sqrt(18-2x)
|
domain\:f(x)=\sqrt{18-2x}
|
domain of f(x)= x/(x^2-x+1)
|
domain\:f(x)=\frac{x}{x^{2}-x+1}
|
range of (4x)/(7x-1)
|
range\:\frac{4x}{7x-1}
|
parity y=(sin(2x))^{4x}
|
parity\:y=(\sin(2x))^{4x}
|
perpendicular 5y=2x-4(0,7)
|
perpendicular\:5y=2x-4(0,7)
|
shift f(x)=-3sin(x)
|
shift\:f(x)=-3\sin(x)
|
parallel y=3x-2
|
parallel\:y=3x-2
|
asymptotes of f(x)=(x+1)/(x^2-9)
|
asymptotes\:f(x)=\frac{x+1}{x^{2}-9}
|
slope intercept of 5(0,0)
|
slope\:intercept\:5(0,0)
|
critical points of tan(1/2 x)
|
critical\:points\:\tan(\frac{1}{2}x)
|
slope intercept of-4x+4y+24=0
|
slope\:intercept\:-4x+4y+24=0
|
domain of 1/(3x-12)sqrt(2x+6)
|
domain\:\frac{1}{3x-12}\sqrt{2x+6}
|
asymptotes of f(x)= 5/(x+7)-8
|
asymptotes\:f(x)=\frac{5}{x+7}-8
|
asymptotes of (2x^2-2)/(x^2-4x+3)
|
asymptotes\:\frac{2x^{2}-2}{x^{2}-4x+3}
|
domain of sqrt((-x+3)/(x^2-1))
|
domain\:\sqrt{\frac{-x+3}{x^{2}-1}}
|
parallel y=-2/5 x+2
|
parallel\:y=-\frac{2}{5}x+2
|
domain of f(x)=sqrt(t+5)
|
domain\:f(x)=\sqrt{t+5}
|
parity f(x)=e^{-x^2}
|
parity\:f(x)=e^{-x^{2}}
|
range of 3^{-x}
|
range\:3^{-x}
|
inverse of-5x+15
|
inverse\:-5x+15
|
domain of f(x)= 7/(1+e^x)
|
domain\:f(x)=\frac{7}{1+e^{x}}
|
domain of (2x)/(-9x^2+324)
|
domain\:\frac{2x}{-9x^{2}+324}
|
7x^2-9x-5
|
7x^{2}-9x-5
|
line (-6,7)(2,-5)
|
line\:(-6,7)(2,-5)
|
monotone intervals f(x)=(x-3)^{2/3}
|
monotone\:intervals\:f(x)=(x-3)^{\frac{2}{3}}
|
extreme points of x^2-x-6
|
extreme\:points\:x^{2}-x-6
|
domain of f(x)=10x
|
domain\:f(x)=10x
|
line m=2,\at (3,-5)
|
line\:m=2,\at\:(3,-5)
|
inverse of f(x)=((x-1))/(x-2)
|
inverse\:f(x)=\frac{(x-1)}{x-2}
|
line (40,67),(70,42)
|
line\:(40,67),(70,42)
|
line (3,-2)(2,-1)
|
line\:(3,-2)(2,-1)
|
domain of f(x)=sqrt(8-5x)
|
domain\:f(x)=\sqrt{8-5x}
|
midpoint (0,19)(-3,0)
|
midpoint\:(0,19)(-3,0)
|
range of f(x)=(x-3)/((x+4)^2)
|
range\:f(x)=\frac{x-3}{(x+4)^{2}}
|
intercepts of f(x)=-2x^2+2x-3
|
intercepts\:f(x)=-2x^{2}+2x-3
|
domain of (\sqrt[3]{x-4})/(x^3-4)
|
domain\:\frac{\sqrt[3]{x-4}}{x^{3}-4}
|
distance (-2,-4)(4,4)
|
distance\:(-2,-4)(4,4)
|
inverse of \sqrt[3]{6x-5}
|
inverse\:\sqrt[3]{6x-5}
|
domain of f(x)=(-6)/(4-3x)+5
|
domain\:f(x)=\frac{-6}{4-3x}+5
|
domain of f(x)=(3x)/(x^3+4x^2-x-4)
|
domain\:f(x)=\frac{3x}{x^{3}+4x^{2}-x-4}
|
range of f(x)=(x-3)^2+2
|
range\:f(x)=(x-3)^{2}+2
|
extreme points of f(x)=-2x^3-27x^2-84x-3
|
extreme\:points\:f(x)=-2x^{3}-27x^{2}-84x-3
|
intercepts of f(x)=x^2-6x+7
|
intercepts\:f(x)=x^{2}-6x+7
|
domain of f(x)=6x+2
|
domain\:f(x)=6x+2
|
inverse of f(x)=10-4x
|
inverse\:f(x)=10-4x
|
inverse of f(x)=4-1/2 x
|
inverse\:f(x)=4-\frac{1}{2}x
|
slope intercept of 5x-4y=-12
|
slope\:intercept\:5x-4y=-12
|
slope of 6x-3y=9
|
slope\:6x-3y=9
|
inverse of f(x)=((2x+5))/(x-3)
|
inverse\:f(x)=\frac{(2x+5)}{x-3}
|
parity f(x)=x^2-9
|
parity\:f(x)=x^{2}-9
|
inverse of y=x-2x^2+1
|
inverse\:y=x-2x^{2}+1
|
domain of f(x)= 1/(x^2-4x-5)
|
domain\:f(x)=\frac{1}{x^{2}-4x-5}
|
domain of f(x)=(8+x)/(1-8x)
|
domain\:f(x)=\frac{8+x}{1-8x}
|
inverse of f(x)=9-3x
|
inverse\:f(x)=9-3x
|
domain of sqrt(((x+4)(x+5))/(x-7))
|
domain\:\sqrt{\frac{(x+4)(x+5)}{x-7}}
|
range of y= 1/(x+2)
|
range\:y=\frac{1}{x+2}
|
inverse of 4x^3-5
|
inverse\:4x^{3}-5
|
intercepts of (x+3)/(x-2)
|
intercepts\:\frac{x+3}{x-2}
|
inverse of f(x)=5x-3
|
inverse\:f(x)=5x-3
|
range of (2x)/(x^2+1)
|
range\:\frac{2x}{x^{2}+1}
|
range of 1/(x-4)+2
|
range\:\frac{1}{x-4}+2
|
extreme points of f(x)=(2x^2-5x)/(2x+3)
|
extreme\:points\:f(x)=\frac{2x^{2}-5x}{2x+3}
|
monotone intervals f(x)= 1/(6x+4)
|
monotone\:intervals\:f(x)=\frac{1}{6x+4}
|
midpoint (1,-1)(9,4)
|
midpoint\:(1,-1)(9,4)
|
range of 3x^2+6x-1
|
range\:3x^{2}+6x-1
|
slope of 12x+3y=7
|
slope\:12x+3y=7
|
domain of f(x)=sqrt((3x^2+x)/(x^2+3x+2))
|
domain\:f(x)=\sqrt{\frac{3x^{2}+x}{x^{2}+3x+2}}
|
slope intercept of 5x+2y=10
|
slope\:intercept\:5x+2y=10
|
domain of f(x)=(7x-14)/(x^2-4)
|
domain\:f(x)=\frac{7x-14}{x^{2}-4}
|
inverse of f(x)=x^4+7
|
inverse\:f(x)=x^{4}+7
|
parity f(x)=-6x^5+7x^2
|
parity\:f(x)=-6x^{5}+7x^{2}
|
distance (0,2)(6,-7)
|
distance\:(0,2)(6,-7)
|
domain of 3(x-4)^2+2
|
domain\:3(x-4)^{2}+2
|
asymptotes of f(x)= 1/(1+2x^2)
|
asymptotes\:f(x)=\frac{1}{1+2x^{2}}
|
slope intercept of 3y-x=-6
|
slope\:intercept\:3y-x=-6
|