inverse of ln(x-5)
|
inverse\:\ln(x-5)
|
inverse of f(x)= 1/2 x-3
|
inverse\:f(x)=\frac{1}{2}x-3
|
range of \sqrt[3]{x-2}+1
|
range\:\sqrt[3]{x-2}+1
|
parity f(x)= 1/x+3
|
parity\:f(x)=\frac{1}{x}+3
|
line (2,0),(8,3)
|
line\:(2,0),(8,3)
|
domain of 9/(sqrt(x+5))
|
domain\:\frac{9}{\sqrt{x+5}}
|
perpendicular y=2x+2,\at (-1,3)
|
perpendicular\:y=2x+2,\at\:(-1,3)
|
perpendicular y= 1/5 x-3,\at (5,-21)
|
perpendicular\:y=\frac{1}{5}x-3,\at\:(5,-21)
|
range of f(x)=x^2+6x+8
|
range\:f(x)=x^{2}+6x+8
|
domain of f(x)=12x+3
|
domain\:f(x)=12x+3
|
symmetry x^2y^2+xy=1
|
symmetry\:x^{2}y^{2}+xy=1
|
domain of f(x)=\sqrt[4]{ln(x)}
|
domain\:f(x)=\sqrt[4]{\ln(x)}
|
domain of f(x)=sqrt(9x+3)
|
domain\:f(x)=\sqrt{9x+3}
|
range of \sqrt[3]{x-3}
|
range\:\sqrt[3]{x-3}
|
range of 1/(x-5)
|
range\:\frac{1}{x-5}
|
critical points of f(x)=x^2e^{4x}
|
critical\:points\:f(x)=x^{2}e^{4x}
|
perpendicular 2x+6y=1,\at (-2,2)
|
perpendicular\:2x+6y=1,\at\:(-2,2)
|
range of 5x-2
|
range\:5x-2
|
asymptotes of f(x)=x/(x^2+5)
|
asymptotes\:f(x)=x/(x^{2}+5)
|
domain of 7/(x+3)
|
domain\:\frac{7}{x+3}
|
asymptotes of f(x)=((2-3x))/((4x+6))
|
asymptotes\:f(x)=\frac{(2-3x)}{(4x+6)}
|
periodicity of tan(3x)
|
periodicity\:\tan(3x)
|
domain of sqrt(-4x^2+12)
|
domain\:\sqrt{-4x^{2}+12}
|
critical points of f(x)= a/(x^2)+x
|
critical\:points\:f(x)=\frac{a}{x^{2}}+x
|
line (340,340.42)(350,350.49)
|
line\:(340,340.42)(350,350.49)
|
domain of f(x)=log_{2}(1)
|
domain\:f(x)=\log_{2}(1)
|
domain of g(x)=(x+4)/(x^3-4x)
|
domain\:g(x)=\frac{x+4}{x^{3}-4x}
|
range of (sqrt(4-x^2))/(x^2-1)
|
range\:\frac{\sqrt{4-x^{2}}}{x^{2}-1}
|
parity f(x)= 2/(x^2)
|
parity\:f(x)=\frac{2}{x^{2}}
|
asymptotes of f(x)= x/(sqrt(x^2-4))
|
asymptotes\:f(x)=\frac{x}{\sqrt{x^{2}-4}}
|
critical points of 6x^4+32x^3
|
critical\:points\:6x^{4}+32x^{3}
|
line 13=-1/2 (25)+b
|
line\:13=-\frac{1}{2}(25)+b
|
domain of f(x)=sqrt(4x+4)
|
domain\:f(x)=\sqrt{4x+4}
|
range of 1/(2x-4)
|
range\:\frac{1}{2x-4}
|
range of f(x)=1-x
|
range\:f(x)=1-x
|
parallel y=-3x+3
|
parallel\:y=-3x+3
|
domain of 1/(sqrt(x^2-9))
|
domain\:\frac{1}{\sqrt{x^{2}-9}}
|
critical points of-sin(x)-9
|
critical\:points\:-\sin(x)-9
|
inverse of 4/(x-3)
|
inverse\:\frac{4}{x-3}
|
slope of 5x+2y=6
|
slope\:5x+2y=6
|
critical points of sqrt(3x^2-4)
|
critical\:points\:\sqrt{3x^{2}-4}
|
inverse of 3-2x^3
|
inverse\:3-2x^{3}
|
asymptotes of f(x)=(x^2)/(x^2+x-90)
|
asymptotes\:f(x)=\frac{x^{2}}{x^{2}+x-90}
|
inverse of f(x)=15-x^2,x>= 0
|
inverse\:f(x)=15-x^{2},x\ge\:0
|
extreme points of f(x)=x^3e^{-x}
|
extreme\:points\:f(x)=x^{3}e^{-x}
|
domain of 1/(sqrt(x+4))
|
domain\:\frac{1}{\sqrt{x+4}}
|
domain of (x-7)/(12x+2)
|
domain\:\frac{x-7}{12x+2}
|
domain of sqrt(x+3)-2
|
domain\:\sqrt{x+3}-2
|
inverse of f(x)=-5/x
|
inverse\:f(x)=-\frac{5}{x}
|
range of f(x)=2(x+3)^2-2
|
range\:f(x)=2(x+3)^{2}-2
|
f(x)=4x^2
|
f(x)=4x^{2}
|
domain of f(x)=2x^2+8x
|
domain\:f(x)=2x^{2}+8x
|
domain of g(x)=sqrt(4-x)+sqrt(x^2-1)
|
domain\:g(x)=\sqrt{4-x}+\sqrt{x^{2}-1}
|
parity f(x)=|x+2|+|x-2|
|
parity\:f(x)=|x+2|+|x-2|
|
shift f(x)=2sin(2x-1/(2.5))
|
shift\:f(x)=2\sin(2x-\frac{1}{2.5})
|
critical points of f(x)=5x+2/x
|
critical\:points\:f(x)=5x+\frac{2}{x}
|
domain of y=3x+2
|
domain\:y=3x+2
|
critical points of f(x)=x^3-3x^2+3x-2
|
critical\:points\:f(x)=x^{3}-3x^{2}+3x-2
|
domain of f(x)=-x^2+1
|
domain\:f(x)=-x^{2}+1
|
domain of y=(x^2-81)/(x-9)
|
domain\:y=\frac{x^{2}-81}{x-9}
|
domain of f(x)=sqrt((x+2)/(x^2-8x+15))
|
domain\:f(x)=\sqrt{\frac{x+2}{x^{2}-8x+15}}
|
inverse of y=6-5x
|
inverse\:y=6-5x
|
inverse of f(x)=e^{x+1}
|
inverse\:f(x)=e^{x+1}
|
inverse of f(x)=y=1-x/9
|
inverse\:f(x)=y=1-\frac{x}{9}
|
asymptotes of f(x)=ln(x)
|
asymptotes\:f(x)=\ln(x)
|
domain of f(x)=8x-2
|
domain\:f(x)=8x-2
|
inverse of f(x)=(2x+1)/(x-1)
|
inverse\:f(x)=\frac{2x+1}{x-1}
|
distance (12,2)(9,6)
|
distance\:(12,2)(9,6)
|
inverse of f(x)=sqrt(y-7)
|
inverse\:f(x)=\sqrt{y-7}
|
inverse of f(x)=log_{3}(x+9)+2
|
inverse\:f(x)=\log_{3}(x+9)+2
|
inverse of y=ln((x+3)/x)
|
inverse\:y=\ln(\frac{x+3}{x})
|
asymptotes of f(x)=(2x^2-6x-8)/(x-5)
|
asymptotes\:f(x)=\frac{2x^{2}-6x-8}{x-5}
|
inverse of 41.5
|
inverse\:41.5
|
critical points of f(x)= x/(x^2+9x+18)
|
critical\:points\:f(x)=\frac{x}{x^{2}+9x+18}
|
asymptotes of f(x)=(2x+10)/(x^2+5x)
|
asymptotes\:f(x)=\frac{2x+10}{x^{2}+5x}
|
inverse of f(x)=9\sqrt[4]{x+4}
|
inverse\:f(x)=9\sqrt[4]{x+4}
|
perpendicular y=-3x+2
|
perpendicular\:y=-3x+2
|
slope of 3x+4y=24
|
slope\:3x+4y=24
|
intercepts of f(x)=8x^2-2x-15
|
intercepts\:f(x)=8x^{2}-2x-15
|
line m=7,\at (-2,-9)
|
line\:m=7,\at\:(-2,-9)
|
intercepts of f(x)=y=2x+3
|
intercepts\:f(x)=y=2x+3
|
amplitude of csc(x)
|
amplitude\:\csc(x)
|
asymptotes of f(x)=8csc(1/3 pi x+1/4 pi)
|
asymptotes\:f(x)=8\csc(\frac{1}{3}\pi\:x+\frac{1}{4}\pi)
|
slope of-y=8x+1
|
slope\:-y=8x+1
|
distance (-2,4)(5,4)
|
distance\:(-2,4)(5,4)
|
domain of f(x)=ln(x^2-1)
|
domain\:f(x)=\ln(x^{2}-1)
|
inverse of f(x)=log_{5}(x+5)
|
inverse\:f(x)=\log_{5}(x+5)
|
domain of 1+1/(x-1)
|
domain\:1+\frac{1}{x-1}
|
domain of f(x)=(4*[5*(x^2)-1]-8)^{(1/2)}
|
domain\:f(x)=(4\cdot\:[5\cdot\:(x^{2})-1]-8)^{(1/2)}
|
intercepts of x^9-9x
|
intercepts\:x^{9}-9x
|
inverse of f(x)=((x-2)^3)/(64)+3
|
inverse\:f(x)=\frac{(x-2)^{3}}{64}+3
|
extreme points of f(x)=-(10x)/(x^2+25)
|
extreme\:points\:f(x)=-\frac{10x}{x^{2}+25}
|
inverse of y=cos(2x)
|
inverse\:y=\cos(2x)
|
periodicity of 1.5cos(6x-3.2)
|
periodicity\:1.5\cos(6x-3.2)
|
domain of (sqrt(3x))/(x+9)
|
domain\:\frac{\sqrt{3x}}{x+9}
|
f(x)=3
|
f(x)=3
|
intercepts of (x^2+8x+15)/(x+5)
|
intercepts\:\frac{x^{2}+8x+15}{x+5}
|
asymptotes of f(x)=-e^{-x}
|
asymptotes\:f(x)=-e^{-x}
|
intercepts of (2x^2-8x+5)/((x-2)^2)
|
intercepts\:\frac{2x^{2}-8x+5}{(x-2)^{2}}
|
periodicity of f(x)=3sin(8pi x+3/2)
|
periodicity\:f(x)=3\sin(8\pi\:x+\frac{3}{2})
|