extreme points of f(x)=4sqrt(x^2+1)-x
|
extreme\:points\:f(x)=4\sqrt{x^{2}+1}-x
|
slope intercept of 7x-y=-4
|
slope\:intercept\:7x-y=-4
|
slope of y=2x-10
|
slope\:y=2x-10
|
domain of sqrt(7+3x)
|
domain\:\sqrt{7+3x}
|
critical points of x-1/x
|
critical\:points\:x-\frac{1}{x}
|
domain of f(5x)=4x^{(2)}+4x-4
|
domain\:f(5x)=4x^{(2)}+4x-4
|
parity 3\sqrt[3]{x-8}-5
|
parity\:3\sqrt[3]{x-8}-5
|
critical points of xe^{-2x}
|
critical\:points\:xe^{-2x}
|
range of f(x)=-x^2-8x+2
|
range\:f(x)=-x^{2}-8x+2
|
(sin(x))/x
|
\frac{\sin(x)}{x}
|
intercepts of x^2-13x+40
|
intercepts\:x^{2}-13x+40
|
domain of x^2-4x+10
|
domain\:x^{2}-4x+10
|
domain of f(x)=sqrt(-6x+6)
|
domain\:f(x)=\sqrt{-6x+6}
|
asymptotes of x/(e^x)
|
asymptotes\:\frac{x}{e^{x}}
|
range of (x^2-4)/(3x-6)
|
range\:\frac{x^{2}-4}{3x-6}
|
domain of f(x)=sqrt(-7x+14)
|
domain\:f(x)=\sqrt{-7x+14}
|
domain of sqrt((8+x)/(8-x))
|
domain\:\sqrt{\frac{8+x}{8-x}}
|
line (-3,2)\land (-1,6)
|
line\:(-3,2)\land\:(-1,6)
|
critical points of f(x)=ln(2+sin(x))
|
critical\:points\:f(x)=\ln(2+\sin(x))
|
perpendicular x-4y=20(-2,4)
|
perpendicular\:x-4y=20(-2,4)
|
domain of f(x)=((x+8))/(x-8)
|
domain\:f(x)=\frac{(x+8)}{x-8}
|
symmetry (x+5)^2
|
symmetry\:(x+5)^{2}
|
slope intercept of 3x+5y=0
|
slope\:intercept\:3x+5y=0
|
extreme points of f(x)=(60t)/(t^2+36)
|
extreme\:points\:f(x)=\frac{60t}{t^{2}+36}
|
domain of f(x)= 3/x+9
|
domain\:f(x)=\frac{3}{x}+9
|
extreme points of f(x)=-x^5-3x^4+2x^2
|
extreme\:points\:f(x)=-x^{5}-3x^{4}+2x^{2}
|
asymptotes of f(x)=(cos(x))/x
|
asymptotes\:f(x)=\frac{\cos(x)}{x}
|
asymptotes of f(x)=(5+4x)/(x+3)
|
asymptotes\:f(x)=\frac{5+4x}{x+3}
|
range of f(x)= 1/(sqrt(1-x^2))
|
range\:f(x)=\frac{1}{\sqrt{1-x^{2}}}
|
inverse of f(x)=3x-5\div 2
|
inverse\:f(x)=3x-5\div\:2
|
critical points of x+5
|
critical\:points\:x+5
|
domain of f(x)=-2(x+2.5)^2+16.5
|
domain\:f(x)=-2(x+2.5)^{2}+16.5
|
midpoint (10,5)(4,-1)
|
midpoint\:(10,5)(4,-1)
|
slope of 9x-y=36
|
slope\:9x-y=36
|
inverse of f(x)=(x-5)^2+2
|
inverse\:f(x)=(x-5)^{2}+2
|
midpoint (5,3)(1,-1)
|
midpoint\:(5,3)(1,-1)
|
parity f(x)=x^2+3
|
parity\:f(x)=x^{2}+3
|
domain of-(13)/((2+x)^2)
|
domain\:-\frac{13}{(2+x)^{2}}
|
domain of 3/(sqrt(2x+4))
|
domain\:\frac{3}{\sqrt{2x+4}}
|
domain of f(x)=1275-17t
|
domain\:f(x)=1275-17t
|
extreme points of f(x)=-0.1x^2+0.8x+98.8
|
extreme\:points\:f(x)=-0.1x^{2}+0.8x+98.8
|
inflection points of (e^x)/(6+e^x)
|
inflection\:points\:\frac{e^{x}}{6+e^{x}}
|
amplitude of-3sin(2x+(pi)/2)
|
amplitude\:-3\sin(2x+\frac{\pi}{2})
|
line y=8
|
line\:y=8
|
slope intercept of x-3y=5
|
slope\:intercept\:x-3y=5
|
domain of f(x)=sqrt((5-x)/(x^2-9))
|
domain\:f(x)=\sqrt{\frac{5-x}{x^{2}-9}}
|
range of y=x^3
|
range\:y=x^{3}
|
critical points of f(x)=2x^4-3x^3+x^2
|
critical\:points\:f(x)=2x^{4}-3x^{3}+x^{2}
|
extreme points of f(x)=-0.1x^2+1.4x+98.4
|
extreme\:points\:f(x)=-0.1x^{2}+1.4x+98.4
|
inverse of f(x)=(x^7+4)^{1/5}-2
|
inverse\:f(x)=(x^{7}+4)^{\frac{1}{5}}-2
|
asymptotes of f(x)= x/(x(x+3))
|
asymptotes\:f(x)=\frac{x}{x(x+3)}
|
inverse of f(x)=-1/5 sin(x/3)
|
inverse\:f(x)=-\frac{1}{5}\sin(\frac{x}{3})
|
range of x/(x-2)
|
range\:\frac{x}{x-2}
|
inverse of f(x)=3-sqrt(4x+2)
|
inverse\:f(x)=3-\sqrt{4x+2}
|
domain of sqrt(7x+2)
|
domain\:\sqrt{7x+2}
|
inflection points of f(x)=x^{1/3}(x-4)
|
inflection\:points\:f(x)=x^{\frac{1}{3}}(x-4)
|
range of f(x)=2x^2+16x+96
|
range\:f(x)=2x^{2}+16x+96
|
inverse of f(x)=0.5x+3
|
inverse\:f(x)=0.5x+3
|
1-cos(x)
|
1-\cos(x)
|
domain of f(x)= 3/(x+13)
|
domain\:f(x)=\frac{3}{x+13}
|
asymptotes of f(x)=-5^x
|
asymptotes\:f(x)=-5^{x}
|
range of f(x)=x^2+4x+6
|
range\:f(x)=x^{2}+4x+6
|
slope of y=-3x+2
|
slope\:y=-3x+2
|
asymptotes of f(x)=(x+8)/(x^2(5-2x)^3)
|
asymptotes\:f(x)=\frac{x+8}{x^{2}(5-2x)^{3}}
|
inverse of f(x)=\sqrt[3]{x-1}+2
|
inverse\:f(x)=\sqrt[3]{x-1}+2
|
range of 7/(sqrt(x+5))
|
range\:\frac{7}{\sqrt{x+5}}
|
domain of f(x)=sqrt(3+x)
|
domain\:f(x)=\sqrt{3+x}
|
inverse of 45509584e^{1.01t}
|
inverse\:45509584e^{1.01t}
|
slope of 1/(x-5)x=7
|
slope\:\frac{1}{x-5}x=7
|
inverse of f(x)= x/((x+5))
|
inverse\:f(x)=\frac{x}{(x+5)}
|
domain of-9/(2xsqrt(x))
|
domain\:-\frac{9}{2x\sqrt{x}}
|
inverse of f(x)=2log_{3}(x)
|
inverse\:f(x)=2\log_{3}(x)
|
extreme points of f(x)=xsqrt(18-x^2)
|
extreme\:points\:f(x)=x\sqrt{18-x^{2}}
|
intercepts of (x-2)^3+3
|
intercepts\:(x-2)^{3}+3
|
domain of f(x)=sqrt(24-3x)
|
domain\:f(x)=\sqrt{24-3x}
|
domain of (x-8)/(x^2-25)
|
domain\:\frac{x-8}{x^{2}-25}
|
inverse of f(x)=4x+15
|
inverse\:f(x)=4x+15
|
range of f(x)=y=8^x-4
|
range\:f(x)=y=8^{x}-4
|
inverse of f(x)=4x^2+16x-3
|
inverse\:f(x)=4x^{2}+16x-3
|
line (1/4 ,-1/2),(3/4 ,2)
|
line\:(\frac{1}{4},-\frac{1}{2}),(\frac{3}{4},2)
|
domain of (x^2-7x+10)/(x+2)
|
domain\:\frac{x^{2}-7x+10}{x+2}
|
asymptotes of f(x)=(2x)/(x^2-9)
|
asymptotes\:f(x)=\frac{2x}{x^{2}-9}
|
asymptotes of y=(x^2-x)/(x^2-5x+4)
|
asymptotes\:y=\frac{x^{2}-x}{x^{2}-5x+4}
|
inflection points of f(x)=7sin(x)+7cos(x),[0,2pi]
|
inflection\:points\:f(x)=7\sin(x)+7\cos(x),[0,2\pi]
|
domain of y=f(x)=ln(2x+1)-sqrt(2x-1)
|
domain\:y=f(x)=\ln(2x+1)-\sqrt{2x-1}
|
domain of a^x
|
domain\:a^{x}
|
domain of sqrt(-x-2)
|
domain\:\sqrt{-x-2}
|
domain of (\sqrt[3]{x})/(x^2+3)
|
domain\:\frac{\sqrt[3]{x}}{x^{2}+3}
|
domain of f(x)=2x-2
|
domain\:f(x)=2x-2
|
range of f(x)=4+7sqrt(25-x^2)
|
range\:f(x)=4+7\sqrt{25-x^{2}}
|
domain of f(x)= x/(x^2+4x+3)
|
domain\:f(x)=\frac{x}{x^{2}+4x+3}
|
f(g(2)),g(x)=2x+1,f(x)=x^2
|
f(g(2)),g(x)=2x+1,f(x)=x^{2}
|
slope intercept of y+12=-3(x-4)
|
slope\:intercept\:y+12=-3(x-4)
|
domain of f(x)=sqrt(2x-8)
|
domain\:f(x)=\sqrt{2x-8}
|
amplitude of-2sin(x+(pi)/2)
|
amplitude\:-2\sin(x+\frac{\pi}{2})
|
inverse of 2x-3
|
inverse\:2x-3
|
slope of y=x+1
|
slope\:y=x+1
|
critical points of x^3-3x^2+2
|
critical\:points\:x^{3}-3x^{2}+2
|
range of (x+1)/(1+1/(x+1))
|
range\:\frac{x+1}{1+\frac{1}{x+1}}
|
extreme points of f(x)=x^3-2x+1
|
extreme\:points\:f(x)=x^{3}-2x+1
|