intercepts of f(x)=y= 1/4-3/2 x
|
intercepts\:f(x)=y=\frac{1}{4}-\frac{3}{2}x
|
domain of f(x)={-4,x> 6}
|
domain\:f(x)=\{-4,x\gt\:6\}
|
extreme points of f(x)=8x^3-6x+6
|
extreme\:points\:f(x)=8x^{3}-6x+6
|
inverse of y=8^{x+2}-13
|
inverse\:y=8^{x+2}-13
|
inverse of f(x)=(x-2)^2
|
inverse\:f(x)=(x-2)^{2}
|
asymptotes of f(x)=xe^{-7x}
|
asymptotes\:f(x)=xe^{-7x}
|
critical points of 8x^3-24x+12
|
critical\:points\:8x^{3}-24x+12
|
range of f(x)= 7/((x-2))
|
range\:f(x)=\frac{7}{(x-2)}
|
inverse of f(x)=((x+1))/((x-2))
|
inverse\:f(x)=\frac{(x+1)}{(x-2)}
|
domain of f(x)=3< x<= 7
|
domain\:f(x)=3\lt\:x\le\:7
|
inverse of g(x)=4x-3
|
inverse\:g(x)=4x-3
|
domain of f(x)=sqrt(7+x)
|
domain\:f(x)=\sqrt{7+x}
|
intercepts of x/((x-8)(x+8))
|
intercepts\:\frac{x}{(x-8)(x+8)}
|
inverse of y=6^x
|
inverse\:y=6^{x}
|
asymptotes of f(x)=(x^3+x)/(x^2-6x+5)
|
asymptotes\:f(x)=\frac{x^{3}+x}{x^{2}-6x+5}
|
inverse of (x+1)/x
|
inverse\:\frac{x+1}{x}
|
midpoint (-7,-5)(-3,1)
|
midpoint\:(-7,-5)(-3,1)
|
monotone intervals f(x)=(x-1)^2(2x-5)
|
monotone\:intervals\:f(x)=(x-1)^{2}(2x-5)
|
inverse of f(x)=15-x
|
inverse\:f(x)=15-x
|
inverse of-4x^{11}+1
|
inverse\:-4x^{11}+1
|
domain of f(x)=sqrt((1/x)+3)
|
domain\:f(x)=\sqrt{(\frac{1}{x})+3}
|
domain of f(x)=x^2+25
|
domain\:f(x)=x^{2}+25
|
domain of f(x)=(sqrt(2-x))/(sqrt(x))
|
domain\:f(x)=\frac{\sqrt{2-x}}{\sqrt{x}}
|
parity f(x)=sec(x)-1/(x^3)+5
|
parity\:f(x)=\sec(x)-\frac{1}{x^{3}}+5
|
inverse of f(x)=8(x^7+8)^{1/2}
|
inverse\:f(x)=8(x^{7}+8)^{\frac{1}{2}}
|
midpoint (0, 1/2)(-2/3 ,0)
|
midpoint\:(0,\frac{1}{2})(-\frac{2}{3},0)
|
domain of f(x)= 3/(x^2-1)
|
domain\:f(x)=\frac{3}{x^{2}-1}
|
inverse of f(x)=sqrt(2-x)+7
|
inverse\:f(x)=\sqrt{2-x}+7
|
intercepts of x^3-64
|
intercepts\:x^{3}-64
|
domain of f(x)=(sqrt(x))/(x-4)
|
domain\:f(x)=\frac{\sqrt{x}}{x-4}
|
inflection points of f(x)=(x^2)/(e^x)
|
inflection\:points\:f(x)=\frac{x^{2}}{e^{x}}
|
midpoint (10,5)(5,2)
|
midpoint\:(10,5)(5,2)
|
domain of f(x)= 4/(x+8)*1/(7-x)
|
domain\:f(x)=\frac{4}{x+8}\cdot\:\frac{1}{7-x}
|
f(x)=-4
|
f(x)=-4
|
inverse of y= x/(x+8)
|
inverse\:y=\frac{x}{x+8}
|
distance (-5,-4),(7,-10)
|
distance\:(-5,-4),(7,-10)
|
asymptotes of f(x)=(x^3)/((x-2)^4)
|
asymptotes\:f(x)=\frac{x^{3}}{(x-2)^{4}}
|
domain of y=2x+3
|
domain\:y=2x+3
|
inflection points of f(x)= x/(x^2+16)
|
inflection\:points\:f(x)=\frac{x}{x^{2}+16}
|
inverse of f(x)=log_{3}(-x-4)-1
|
inverse\:f(x)=\log_{3}(-x-4)-1
|
inverse of f(x)=arccos((2x+1)/(x-3))
|
inverse\:f(x)=\arccos(\frac{2x+1}{x-3})
|
distance (3,-7)(-1,2)
|
distance\:(3,-7)(-1,2)
|
extreme points of f(x)=(x^2-8x)
|
extreme\:points\:f(x)=(x^{2}-8x)
|
line m=-7/6 ,\at (-6,-2)
|
line\:m=-\frac{7}{6},\at\:(-6,-2)
|
extreme points of f(x)=-x^4+x^3+2x^2
|
extreme\:points\:f(x)=-x^{4}+x^{3}+2x^{2}
|
inverse of f(x)=(x+1)/(2x+3)
|
inverse\:f(x)=\frac{x+1}{2x+3}
|
domain of f(x)= 1/x-4
|
domain\:f(x)=\frac{1}{x}-4
|
range of x^2+4x+4
|
range\:x^{2}+4x+4
|
distance (3,-6)(-3,2)
|
distance\:(3,-6)(-3,2)
|
domain of f(x)=8x^2-14x+2
|
domain\:f(x)=8x^{2}-14x+2
|
critical points of f(x)=(x^2)/(x^2-25)
|
critical\:points\:f(x)=\frac{x^{2}}{x^{2}-25}
|
inverse of f(x)=3sqrt(2x-1)
|
inverse\:f(x)=3\sqrt{2x-1}
|
inverse of f(x)= 1/(x-11)
|
inverse\:f(x)=\frac{1}{x-11}
|
domain of f(x)=sqrt(x+4)-2
|
domain\:f(x)=\sqrt{x+4}-2
|
inverse of (5-x)^{1/4}
|
inverse\:(5-x)^{\frac{1}{4}}
|
midpoint (0,-10)(1,-3)
|
midpoint\:(0,-10)(1,-3)
|
symmetry x^4-x^2
|
symmetry\:x^{4}-x^{2}
|
domain of f(x)=sqrt(24-4x)
|
domain\:f(x)=\sqrt{24-4x}
|
intercepts of 1/(x^2+2)
|
intercepts\:\frac{1}{x^{2}+2}
|
domain of f(x)=9-4x^2
|
domain\:f(x)=9-4x^{2}
|
range of f(x)=-2x^2-5
|
range\:f(x)=-2x^{2}-5
|
slope of y=(-3)/4 x+2
|
slope\:y=\frac{-3}{4}x+2
|
domain of f(x)=((2-x))/(x+3)
|
domain\:f(x)=\frac{(2-x)}{x+3}
|
intercepts of f(x)=y=3e^{-x}
|
intercepts\:f(x)=y=3e^{-x}
|
periodicity of 3+t^5+sin(pi t)
|
periodicity\:3+t^{5}+\sin(\pi\:t)
|
range of 1/4 x^3-6
|
range\:\frac{1}{4}x^{3}-6
|
domain of f(x)=(10x^2)/(x^4+25)
|
domain\:f(x)=\frac{10x^{2}}{x^{4}+25}
|
range of f(x)= 4/(x^2-25)
|
range\:f(x)=\frac{4}{x^{2}-25}
|
inverse of f(x)=(x-3)/(x+5)
|
inverse\:f(x)=\frac{x-3}{x+5}
|
monotone intervals x^3-3x+3
|
monotone\:intervals\:x^{3}-3x+3
|
x^2+2x+4
|
x^{2}+2x+4
|
domain of f(x)=2-4x
|
domain\:f(x)=2-4x
|
domain of (2+x)/(x+1)
|
domain\:\frac{2+x}{x+1}
|
midpoint (1,5)(7,9)
|
midpoint\:(1,5)(7,9)
|
range of f(x)=-2x-4
|
range\:f(x)=-2x-4
|
line (2,4),(1,2)
|
line\:(2,4),(1,2)
|
asymptotes of f(x)=(8e^x)/(e^x-2)
|
asymptotes\:f(x)=\frac{8e^{x}}{e^{x}-2}
|
extreme points of f(x)=x^3-2x^2-4x+3
|
extreme\:points\:f(x)=x^{3}-2x^{2}-4x+3
|
inverse of f(x)=(x-10)^3
|
inverse\:f(x)=(x-10)^{3}
|
inverse of f(x)=\sqrt[3]{x+2}
|
inverse\:f(x)=\sqrt[3]{x+2}
|
inflection points of (x^2-9)e^x
|
inflection\:points\:(x^{2}-9)e^{x}
|
domain of 3/(3+x)
|
domain\:\frac{3}{3+x}
|
inverse of f(x)= x/3+2
|
inverse\:f(x)=\frac{x}{3}+2
|
range of f(x)= 3/x
|
range\:f(x)=\frac{3}{x}
|
slope intercept of 5x+4y=20
|
slope\:intercept\:5x+4y=20
|
domain of f(x)=(4x+8)/(x^2-4)
|
domain\:f(x)=\frac{4x+8}{x^{2}-4}
|
asymptotes of \sqrt[3]{x^2-x^3}
|
asymptotes\:\sqrt[3]{x^{2}-x^{3}}
|
inverse of f(x)=sin^{-1}(sqrt(x))
|
inverse\:f(x)=\sin^{-1}(\sqrt{x})
|
amplitude of y= 3/2 sin(x+4)
|
amplitude\:y=\frac{3}{2}\sin(x+4)
|
inverse of 4/(x^2)
|
inverse\:\frac{4}{x^{2}}
|
distance (10,-10),(-3,-8)
|
distance\:(10,-10),(-3,-8)
|
perpendicular 4y-3x=-20
|
perpendicular\:4y-3x=-20
|
extreme points of-(x+sin(x))
|
extreme\:points\:-(x+\sin(x))
|
midpoint (sqrt(2),-sqrt(7))(-4sqrt(2),-5sqrt(7))
|
midpoint\:(\sqrt{2},-\sqrt{7})(-4\sqrt{2},-5\sqrt{7})
|
inflection points of f(x)= 6/((x-1)^3)
|
inflection\:points\:f(x)=\frac{6}{(x-1)^{3}}
|
domain of (x^2-3x)/(2x^2+2x-12)
|
domain\:\frac{x^{2}-3x}{2x^{2}+2x-12}
|
midpoint (8,10)(-2,-14)
|
midpoint\:(8,10)(-2,-14)
|
parity f(x)=x^3-5x+7
|
parity\:f(x)=x^{3}-5x+7
|
symmetry (x-4)^2
|
symmetry\:(x-4)^{2}
|
inverse of f(x)= 1/(4x)+3
|
inverse\:f(x)=\frac{1}{4x}+3
|