inverse of (5+x)/(4-2x)
|
inverse\:\frac{5+x}{4-2x}
|
slope intercept of y-4=-3x-10
|
slope\:intercept\:y-4=-3x-10
|
line (2,3)(2,2)
|
line\:(2,3)(2,2)
|
inflection points of x/(x^2-6x+8)
|
inflection\:points\:\frac{x}{x^{2}-6x+8}
|
extreme points of f(x)=2^x
|
extreme\:points\:f(x)=2^{x}
|
domain of f(x)=y=sqrt(16-x^2)
|
domain\:f(x)=y=\sqrt{16-x^{2}}
|
monotone intervals 1/4 x^4-1/3 x^3-x^2
|
monotone\:intervals\:\frac{1}{4}x^{4}-\frac{1}{3}x^{3}-x^{2}
|
intercepts of \sqrt[3]{x}+3
|
intercepts\:\sqrt[3]{x}+3
|
asymptotes of f(x)= 1/(sqrt(x-2))
|
asymptotes\:f(x)=\frac{1}{\sqrt{x-2}}
|
inverse of f(x)=((3x-5))/((x+1))
|
inverse\:f(x)=\frac{(3x-5)}{(x+1)}
|
range of f(x)=\sqrt[3]{x}
|
range\:f(x)=\sqrt[3]{x}
|
asymptotes of f(x)=((x+5))/((x^2+3x-10))
|
asymptotes\:f(x)=\frac{(x+5)}{(x^{2}+3x-10)}
|
domain of f(x)=(2x-3)/(sqrt(x^2-5x+6))
|
domain\:f(x)=\frac{2x-3}{\sqrt{x^{2}-5x+6}}
|
domain of f(x)= 1/(sqrt(x+11))
|
domain\:f(x)=\frac{1}{\sqrt{x+11}}
|
domain of sqrt(x-4)
|
domain\:\sqrt{x-4}
|
asymptotes of f(x)=y
|
asymptotes\:f(x)=y
|
inverse of x^2+11x
|
inverse\:x^{2}+11x
|
amplitude of tan(2x-5)
|
amplitude\:\tan(2x-5)
|
domain of f(x)=(5x)/(5x+15)-3
|
domain\:f(x)=\frac{5x}{5x+15}-3
|
inflection points of (x^2-6x+5)/(x-3)
|
inflection\:points\:\frac{x^{2}-6x+5}{x-3}
|
range of y=(2x^2)/(x^2-9)
|
range\:y=\frac{2x^{2}}{x^{2}-9}
|
domain of ln(1/(x+7))
|
domain\:\ln(\frac{1}{x+7})
|
sin^4(x)
|
\sin^{4}(x)
|
inverse of 2-sqrt(x+1)
|
inverse\:2-\sqrt{x+1}
|
slope intercept of 4x-5y=15
|
slope\:intercept\:4x-5y=15
|
perpendicular y=-2x+6,\at (2,2)
|
perpendicular\:y=-2x+6,\at\:(2,2)
|
inverse of f(x)=-8x+1
|
inverse\:f(x)=-8x+1
|
domain of f(x)=sqrt(t+2)
|
domain\:f(x)=\sqrt{t+2}
|
inverse of y=3x+12
|
inverse\:y=3x+12
|
asymptotes of f(x)=(x^3-1)/(-4x^2+4x+24)
|
asymptotes\:f(x)=\frac{x^{3}-1}{-4x^{2}+4x+24}
|
midpoint (-2,-4)(2,-10)
|
midpoint\:(-2,-4)(2,-10)
|
domain of f(x)=sqrt(1/(\sqrt{x))}
|
domain\:f(x)=\sqrt{\frac{1}{\sqrt{x}}}
|
parity f(x)=sin(x)cos(x)
|
parity\:f(x)=\sin(x)\cos(x)
|
domain of (2-x^2)/(x^2-9)
|
domain\:\frac{2-x^{2}}{x^{2}-9}
|
domain of f(x)=(2x-1)/(4+5x)
|
domain\:f(x)=\frac{2x-1}{4+5x}
|
intercepts of f(x)=(x-5)^2(x+3)
|
intercepts\:f(x)=(x-5)^{2}(x+3)
|
perpendicular 7x+2y=14
|
perpendicular\:7x+2y=14
|
inverse of sqrt(x-2)
|
inverse\:\sqrt{x-2}
|
intercepts of f(x)=x^2+x+2/(x-1)
|
intercepts\:f(x)=x^{2}+x+\frac{2}{x-1}
|
asymptotes of f(x)=(x^2)/((x+1)^{1/2)}
|
asymptotes\:f(x)=\frac{x^{2}}{(x+1)^{\frac{1}{2}}}
|
slope of 5x+2y=4
|
slope\:5x+2y=4
|
extreme points of f(x)=(ln(x))/x
|
extreme\:points\:f(x)=\frac{\ln(x)}{x}
|
intercepts of f(x)=y=-2x+6
|
intercepts\:f(x)=y=-2x+6
|
line 5x-2y=4
|
line\:5x-2y=4
|
extreme points of f(x)=8(x-6)^{2/3}+2
|
extreme\:points\:f(x)=8(x-6)^{\frac{2}{3}}+2
|
domain of ln(x^2-18x)
|
domain\:\ln(x^{2}-18x)
|
extreme points of f(x)=x+2/x
|
extreme\:points\:f(x)=x+\frac{2}{x}
|
critical points of ((x^2-9))/(x^3+3x^2)
|
critical\:points\:\frac{(x^{2}-9)}{x^{3}+3x^{2}}
|
inverse of f(x)=(-x-2)/(x+4)
|
inverse\:f(x)=\frac{-x-2}{x+4}
|
extreme points of f(x)=0.002x^3+5x+6.244
|
extreme\:points\:f(x)=0.002x^{3}+5x+6.244
|
domain of f(x)=-5x-4
|
domain\:f(x)=-5x-4
|
asymptotes of f(x)=(x^2+9x-9)/(x-9)
|
asymptotes\:f(x)=\frac{x^{2}+9x-9}{x-9}
|
inverse of f(x)=((x+3))/(x-4)
|
inverse\:f(x)=\frac{(x+3)}{x-4}
|
asymptotes of sqrt(1-x^2)
|
asymptotes\:\sqrt{1-x^{2}}
|
domain of 5-2x
|
domain\:5-2x
|
slope of 3/5
|
slope\:\frac{3}{5}
|
line (5x)/2-6/1
|
line\:\frac{5x}{2}-\frac{6}{1}
|
intercepts of f(x)=-4x^2+10x-6
|
intercepts\:f(x)=-4x^{2}+10x-6
|
inverse of 1/(X^2)
|
inverse\:\frac{1}{X^{2}}
|
domain of y=sqrt(x^2-16)
|
domain\:y=\sqrt{x^{2}-16}
|
domain of f(x)=(sqrt(2x+5))/(x-7)
|
domain\:f(x)=\frac{\sqrt{2x+5}}{x-7}
|
line (-3,4),(2,-6)
|
line\:(-3,4),(2,-6)
|
domain of f(x)= x/(sqrt(9-x^2))
|
domain\:f(x)=\frac{x}{\sqrt{9-x^{2}}}
|
domain of f(x)=sin(2x)
|
domain\:f(x)=\sin(2x)
|
line (-5,-8)(-8,7)
|
line\:(-5,-8)(-8,7)
|
intercepts of 1/4 x^2+2/3 x-1/6
|
intercepts\:\frac{1}{4}x^{2}+\frac{2}{3}x-\frac{1}{6}
|
extreme points of f(x)=2x+7
|
extreme\:points\:f(x)=2x+7
|
asymptotes of 4/x-x
|
asymptotes\:\frac{4}{x}-x
|
asymptotes of f(x)=((x^2-4x))/(x^2-16)
|
asymptotes\:f(x)=\frac{(x^{2}-4x)}{x^{2}-16}
|
inverse of x^4+2
|
inverse\:x^{4}+2
|
range of (2x^2-10)/(x+2)
|
range\:\frac{2x^{2}-10}{x+2}
|
shift 15+5sin(-(pi}{12}x+\frac{7pi)/4)
|
shift\:15+5\sin(-\frac{\pi}{12}x+\frac{7\pi}{4})
|
inverse of 2-4x^3
|
inverse\:2-4x^{3}
|
parallel x-y=1,\at (-5,5)
|
parallel\:x-y=1,\at\:(-5,5)
|
inverse of f(x)=2x^{3/2}
|
inverse\:f(x)=2x^{\frac{3}{2}}
|
slope intercept of 4x+3y=9
|
slope\:intercept\:4x+3y=9
|
inverse of 3/(2x^3)
|
inverse\:\frac{3}{2x^{3}}
|
slope of-6y=8x-4
|
slope\:-6y=8x-4
|
domain of sqrt(-x+2)
|
domain\:\sqrt{-x+2}
|
domain of , 7/x-9/(x+9)
|
domain\:,\frac{7}{x}-\frac{9}{x+9}
|
parallel-2x+3,\at (2,2)
|
parallel\:-2x+3,\at\:(2,2)
|
inverse of y=2x-1
|
inverse\:y=2x-1
|
slope intercept of 3x+4y=8
|
slope\:intercept\:3x+4y=8
|
range of-x^2+4x+2
|
range\:-x^{2}+4x+2
|
perpendicular y=-4/3 x-3,\at (-4,1)
|
perpendicular\:y=-\frac{4}{3}x-3,\at\:(-4,1)
|
inverse of y^2
|
inverse\:y^{2}
|
line (,1)(1,)
|
line\:(,1)(1,)
|
domain of f(x)= x/(1+2x)
|
domain\:f(x)=\frac{x}{1+2x}
|
inverse of 9+sqrt(1+x)
|
inverse\:9+\sqrt{1+x}
|
parity tan(e^{3t})+e^{tan(3t)}
|
parity\:\tan(e^{3t})+e^{\tan(3t)}
|
domain of 1/(-5x+8)
|
domain\:\frac{1}{-5x+8}
|
f(x)= 1/(x^2-1)
|
f(x)=\frac{1}{x^{2}-1}
|
domain of (x+2)/(x-3)
|
domain\:\frac{x+2}{x-3}
|
critical points of f(x)=x^4-7x^2+8
|
critical\:points\:f(x)=x^{4}-7x^{2}+8
|
slope of 3x-5y=10
|
slope\:3x-5y=10
|
domain of 1/(x^2+2x+1)
|
domain\:\frac{1}{x^{2}+2x+1}
|
inverse of f(x)=12-9x
|
inverse\:f(x)=12-9x
|
inflection points of 1/(x+1)
|
inflection\:points\:\frac{1}{x+1}
|
inflection points of 2x^5-4x^3-6x^2-7x
|
inflection\:points\:2x^{5}-4x^{3}-6x^{2}-7x
|
inverse of f(x)= 7/8
|
inverse\:f(x)=\frac{7}{8}
|