domain of x^2-2x-1
|
domain\:x^{2}-2x-1
|
domain of f(x)=-2/(x^3)
|
domain\:f(x)=-\frac{2}{x^{3}}
|
parity f(x)= 4/x
|
parity\:f(x)=\frac{4}{x}
|
domain of f(x)= 1/(\sqrt[4]{x^2-6x)}
|
domain\:f(x)=\frac{1}{\sqrt[4]{x^{2}-6x}}
|
domain of f(x)=(x-1)^3+3
|
domain\:f(x)=(x-1)^{3}+3
|
domain of (x^2+4x)/(x^3-17x^2+72x)
|
domain\:\frac{x^{2}+4x}{x^{3}-17x^{2}+72x}
|
midpoint (-2,7)(4,3)
|
midpoint\:(-2,7)(4,3)
|
range of f(x)=7^x
|
range\:f(x)=7^{x}
|
inverse of 1+sqrt(x-3)
|
inverse\:1+\sqrt{x-3}
|
asymptotes of f(x)=(2x-7)/(x-3)
|
asymptotes\:f(x)=\frac{2x-7}{x-3}
|
extreme points of 15x^{2/3}-10x
|
extreme\:points\:15x^{\frac{2}{3}}-10x
|
parity f(x)=|x|-1
|
parity\:f(x)=|x|-1
|
line (1,7)(-3,-1)
|
line\:(1,7)(-3,-1)
|
inverse of y=12000-(11800)/(x+1)
|
inverse\:y=12000-\frac{11800}{x+1}
|
asymptotes of y=log_{10}(x+3)
|
asymptotes\:y=\log_{10}(x+3)
|
domain of tan((pi)/3 x)
|
domain\:\tan(\frac{\pi}{3}x)
|
domain of f(x)= x/(9x+5)
|
domain\:f(x)=\frac{x}{9x+5}
|
range of 2x^3-x
|
range\:2x^{3}-x
|
intercepts of f(x)=2x^2+4x-10
|
intercepts\:f(x)=2x^{2}+4x-10
|
periodicity of f(x)=2sin(pi x+4)-2
|
periodicity\:f(x)=2\sin(\pi\:x+4)-2
|
parity f(x)= 1/(8x^3)
|
parity\:f(x)=\frac{1}{8x^{3}}
|
parallel y=2x-6,\at (-2,2)
|
parallel\:y=2x-6,\at\:(-2,2)
|
extreme points of f(x)=4sqrt(x)-6x
|
extreme\:points\:f(x)=4\sqrt{x}-6x
|
inverse of 5sqrt(x+1)-2
|
inverse\:5\sqrt{x+1}-2
|
inflection points of (x^2-2)^3
|
inflection\:points\:(x^{2}-2)^{3}
|
inverse of f(x)=log_{5}(((1-x))/(1+x))
|
inverse\:f(x)=\log_{5}(\frac{(1-x)}{1+x})
|
domain of (2-x^2)-(x^2-9)
|
domain\:(2-x^{2})-(x^{2}-9)
|
critical points of f(x)=(x-2)^{6/7}
|
critical\:points\:f(x)=(x-2)^{\frac{6}{7}}
|
range of-cos(2x)
|
range\:-\cos(2x)
|
slope of y=-4/5 x+1/2
|
slope\:y=-\frac{4}{5}x+\frac{1}{2}
|
distance (-1,8),(2,3)
|
distance\:(-1,8),(2,3)
|
intercepts of f(x)=2x
|
intercepts\:f(x)=2x
|
inverse of f(x)=2sqrt(3(x-1))+5
|
inverse\:f(x)=2\sqrt{3(x-1)}+5
|
inverse of x^3-6
|
inverse\:x^{3}-6
|
shift-2+2cos(2x-(pi)/2)
|
shift\:-2+2\cos(2x-\frac{\pi}{2})
|
domain of f(x)=3x^3-sqrt(4)x+1/3
|
domain\:f(x)=3x^{3}-\sqrt{4}x+\frac{1}{3}
|
slope of y=-2/3 x+5
|
slope\:y=-\frac{2}{3}x+5
|
inverse of f(x)=(x-4)/(19)
|
inverse\:f(x)=\frac{x-4}{19}
|
inflection points of x^3-8x^2-12x+8
|
inflection\:points\:x^{3}-8x^{2}-12x+8
|
inverse of y=7x^2-3
|
inverse\:y=7x^{2}-3
|
asymptotes of f(x)=(x-4)/(x^2-16)
|
asymptotes\:f(x)=\frac{x-4}{x^{2}-16}
|
domain of f(x)=(x-2)/(x-81)
|
domain\:f(x)=\frac{x-2}{x-81}
|
domain of f(x)=(x-2)^{1/2}
|
domain\:f(x)=(x-2)^{\frac{1}{2}}
|
f(x)=4x
|
f(x)=4x
|
asymptotes of f(x)=-3/4 x^4-x^3+3x^2
|
asymptotes\:f(x)=-\frac{3}{4}x^{4}-x^{3}+3x^{2}
|
inverse of f(x)=sqrt(x)+4
|
inverse\:f(x)=\sqrt{x}+4
|
inverse of f(x)=3+sqrt(x-6)
|
inverse\:f(x)=3+\sqrt{x-6}
|
line (28,48),(50,42)
|
line\:(28,48),(50,42)
|
inverse of f(x)=sqrt(6x+30)
|
inverse\:f(x)=\sqrt{6x+30}
|
periodicity of f(x)=sin(-x)
|
periodicity\:f(x)=\sin(-x)
|
inverse of f(x)=(x+20)/x
|
inverse\:f(x)=\frac{x+20}{x}
|
asymptotes of sqrt(x+3)
|
asymptotes\:\sqrt{x+3}
|
shift csc(2(x+3/4))+1
|
shift\:\csc(2(x+\frac{3}{4}))+1
|
inverse of f(x)=(2x+1)/(3-2x)
|
inverse\:f(x)=\frac{2x+1}{3-2x}
|
range of 65x-10
|
range\:65x-10
|
inverse of f(x)=5x^2+2
|
inverse\:f(x)=5x^{2}+2
|
inverse of f(x)=(x+1)/7
|
inverse\:f(x)=\frac{x+1}{7}
|
inverse of 1/(2cos^2(x))
|
inverse\:\frac{1}{2\cos^{2}(x)}
|
domain of 3/((sqrt(2-x))^2-9)
|
domain\:\frac{3}{(\sqrt{2-x})^{2}-9}
|
critical points of f(x)=x^2e^{-x^2}
|
critical\:points\:f(x)=x^{2}e^{-x^{2}}
|
asymptotes of (2x+1)/(x^2+6x+8)
|
asymptotes\:\frac{2x+1}{x^{2}+6x+8}
|
range of (-2)/(x-3)
|
range\:\frac{-2}{x-3}
|
domain of-4/(x+1)-2
|
domain\:-\frac{4}{x+1}-2
|
inverse of f(x)=5x^3+7
|
inverse\:f(x)=5x^{3}+7
|
domain of y= 1/(1+x)
|
domain\:y=\frac{1}{1+x}
|
intercepts of f(x)=4x^2-16x+11
|
intercepts\:f(x)=4x^{2}-16x+11
|
range of f(x)=x-x^2
|
range\:f(x)=x-x^{2}
|
domain of f(x)=-(2.8)^{(x+4)}+7
|
domain\:f(x)=-(2.8)^{(x+4)}+7
|
domain of-2(x+3)^2-1
|
domain\:-2(x+3)^{2}-1
|
inverse of f(x)=11x+9
|
inverse\:f(x)=11x+9
|
parity f(x)=1111011100
|
parity\:f(x)=1111011100
|
asymptotes of f(x)=(x^2-4)/(x+2)
|
asymptotes\:f(x)=\frac{x^{2}-4}{x+2}
|
asymptotes of f(x)=(3x)/(x^2-3x+2)
|
asymptotes\:f(x)=\frac{3x}{x^{2}-3x+2}
|
inverse of h(n)= 1/n+1
|
inverse\:h(n)=\frac{1}{n}+1
|
domain of f(x)=sqrt(7x+6)
|
domain\:f(x)=\sqrt{7x+6}
|
domain of ln(16-t^2)
|
domain\:\ln(16-t^{2})
|
parity (tan(theta))/(theta)
|
parity\:\frac{\tan(\theta)}{\theta}
|
y=sqrt(9-x^2)
|
y=\sqrt{9-x^{2}}
|
domain of e^{sqrt(x)}
|
domain\:e^{\sqrt{x}}
|
domain of (x-6)/(x-25)
|
domain\:\frac{x-6}{x-25}
|
asymptotes of 2^x-2
|
asymptotes\:2^{x}-2
|
distance (-5,1)(-2,5)
|
distance\:(-5,1)(-2,5)
|
range of f(x)=sqrt(5x+3)
|
range\:f(x)=\sqrt{5x+3}
|
domain of (x^2)/(1-x)
|
domain\:\frac{x^{2}}{1-x}
|
f(x)=x^2-4x+4
|
f(x)=x^{2}-4x+4
|
inverse of f(x)= k/(x-1)+1
|
inverse\:f(x)=\frac{k}{x-1}+1
|
range of (12)/x
|
range\:\frac{12}{x}
|
domain of f(x)=(5x)/(x^2-2x)
|
domain\:f(x)=\frac{5x}{x^{2}-2x}
|
intercepts of 4x^2-x-3
|
intercepts\:4x^{2}-x-3
|
range of f(t)=(16-t)^{1/6}
|
range\:f(t)=(16-t)^{\frac{1}{6}}
|
inflection points of f(x)=(7-x)e^{-x}
|
inflection\:points\:f(x)=(7-x)e^{-x}
|
inverse of f(x)=7-5x^3
|
inverse\:f(x)=7-5x^{3}
|
extreme points of f(x)=xe^{-x}
|
extreme\:points\:f(x)=xe^{-x}
|
intercepts of f(x)=(x^2-x-2)/(x^2-16)
|
intercepts\:f(x)=\frac{x^{2}-x-2}{x^{2}-16}
|
domain of f(x)=(x^2+1)/(sqrt(x-2))
|
domain\:f(x)=\frac{x^{2}+1}{\sqrt{x-2}}
|
midpoint (9,6)\land (-3,9)
|
midpoint\:(9,6)\land\:(-3,9)
|
asymptotes of f(x)=(x^2-25)/(x^2-x-20)
|
asymptotes\:f(x)=\frac{x^{2}-25}{x^{2}-x-20}
|
asymptotes of f(x)= 3/(x+1)-2
|
asymptotes\:f(x)=\frac{3}{x+1}-2
|
range of \sqrt[3]{x}-4
|
range\:\sqrt[3]{x}-4
|
extreme points of f(x)=-x^2
|
extreme\:points\:f(x)=-x^{2}
|