intercepts of f(x)=-2
|
intercepts\:f(x)=-2
|
domain of f(x)=(sqrt(x-6))/(x(x-7))
|
domain\:f(x)=\frac{\sqrt{x-6}}{x(x-7)}
|
inverse of f(x)=(3-x)^2
|
inverse\:f(x)=(3-x)^{2}
|
asymptotes of f(x)= 5/((x-3))
|
asymptotes\:f(x)=\frac{5}{(x-3)}
|
range of f(x)=2sqrt(x+1)-3
|
range\:f(x)=2\sqrt{x+1}-3
|
asymptotes of f(x)=((x^2+x+2))/(x-1)
|
asymptotes\:f(x)=\frac{(x^{2}+x+2)}{x-1}
|
symmetry (x-1)^2+2
|
symmetry\:(x-1)^{2}+2
|
domain of f(x)=x+sqrt(x)+1
|
domain\:f(x)=x+\sqrt{x}+1
|
domain of f(x)=(sqrt(x)+1)/(x^2-4)
|
domain\:f(x)=\frac{\sqrt{x}+1}{x^{2}-4}
|
range of (x+1)/(10(x-2))
|
range\:\frac{x+1}{10(x-2)}
|
distance (-1,2)(3,2)
|
distance\:(-1,2)(3,2)
|
domain of f(x)=(3x^2)/(x^2-4)
|
domain\:f(x)=\frac{3x^{2}}{x^{2}-4}
|
critical points of (x^2)/(1-x)
|
critical\:points\:\frac{x^{2}}{1-x}
|
midpoint (-5,-2)(2,3)
|
midpoint\:(-5,-2)(2,3)
|
asymptotes of f(x)= 3/((x-4)^3)
|
asymptotes\:f(x)=\frac{3}{(x-4)^{3}}
|
parity 2x+3
|
parity\:2x+3
|
slope intercept of 3x-3y=9
|
slope\:intercept\:3x-3y=9
|
extreme points of f(x)=3x^{2/5}-x^{3/5}
|
extreme\:points\:f(x)=3x^{\frac{2}{5}}-x^{\frac{3}{5}}
|
range of (x+1)/(2x+1)
|
range\:\frac{x+1}{2x+1}
|
parity f(x)=(6x)/(sin(x))
|
parity\:f(x)=\frac{6x}{\sin(x)}
|
domain of f(x)=(x+3)/(x^2-4)
|
domain\:f(x)=\frac{x+3}{x^{2}-4}
|
inverse of f(x)=4(x-3)^5
|
inverse\:f(x)=4(x-3)^{5}
|
inverse of f(x)=2x^2-8x,x>= 2
|
inverse\:f(x)=2x^{2}-8x,x\ge\:2
|
inverse of (4+x)/(2-x)
|
inverse\:\frac{4+x}{2-x}
|
slope intercept of-5x+4y-53=0
|
slope\:intercept\:-5x+4y-53=0
|
intercepts of f(x)=(-3x+15)/(x^2-5x)
|
intercepts\:f(x)=\frac{-3x+15}{x^{2}-5x}
|
asymptotes of f(x)=(x^2-4x+6)/((x-2)^2)
|
asymptotes\:f(x)=\frac{x^{2}-4x+6}{(x-2)^{2}}
|
range of f(x)=8x
|
range\:f(x)=8x
|
inverse of ln(3)e^x
|
inverse\:\ln(3)e^{x}
|
intercepts of y=x^2-4x-5
|
intercepts\:y=x^{2}-4x-5
|
midpoint (14,-8)(4,12)
|
midpoint\:(14,-8)(4,12)
|
range of f(x)=x+9
|
range\:f(x)=x+9
|
domain of f(x)=sqrt(10-7x)
|
domain\:f(x)=\sqrt{10-7x}
|
line (1,-6)(-8,-1)
|
line\:(1,-6)(-8,-1)
|
asymptotes of f(x)=(x^2+36)/(x^2-36)
|
asymptotes\:f(x)=\frac{x^{2}+36}{x^{2}-36}
|
asymptotes of f(x)=(x-5)/(3x^2-17x-28)
|
asymptotes\:f(x)=\frac{x-5}{3x^{2}-17x-28}
|
domain of sqrt(8x-1)
|
domain\:\sqrt{8x-1}
|
slope of y=4x+6
|
slope\:y=4x+6
|
asymptotes of y=2csc(2x)
|
asymptotes\:y=2\csc(2x)
|
domain of f(x)=(4x)/(sqrt(x+2))
|
domain\:f(x)=\frac{4x}{\sqrt{x+2}}
|
range of 1/(2x-1)
|
range\:\frac{1}{2x-1}
|
inverse of f(x)=2^{x/3}
|
inverse\:f(x)=2^{\frac{x}{3}}
|
asymptotes of (x^2)/((x+2)(x-3))
|
asymptotes\:\frac{x^{2}}{(x+2)(x-3)}
|
domain of f(x)=sqrt(49-x^2)
|
domain\:f(x)=\sqrt{49-x^{2}}
|
domain of-30x^2+28x-6
|
domain\:-30x^{2}+28x-6
|
range of sqrt((4x)/(x^2+1))
|
range\:\sqrt{\frac{4x}{x^{2}+1}}
|
domain of f(x)=3(2)^x-4
|
domain\:f(x)=3(2)^{x}-4
|
inflection points of x+5/x
|
inflection\:points\:x+\frac{5}{x}
|
domain of sqrt(x/(x-1))
|
domain\:\sqrt{\frac{x}{x-1}}
|
domain of y= 5/2 x-13/2
|
domain\:y=\frac{5}{2}x-\frac{13}{2}
|
inverse of f(x)=2x-10\div 5
|
inverse\:f(x)=2x-10\div\:5
|
domain of y=1-sqrt(x)
|
domain\:y=1-\sqrt{x}
|
domain of f(x)=x^2+8x+15
|
domain\:f(x)=x^{2}+8x+15
|
range of (1/2)^{x+4}-3
|
range\:(\frac{1}{2})^{x+4}-3
|
asymptotes of (3x)/(x-5)
|
asymptotes\:\frac{3x}{x-5}
|
inverse of f(x)=(x-1)/4
|
inverse\:f(x)=\frac{x-1}{4}
|
domain of f(x)=0.5x+10
|
domain\:f(x)=0.5x+10
|
inverse of x/(x+2)
|
inverse\:\frac{x}{x+2}
|
distance (5,-1)(-1,5)
|
distance\:(5,-1)(-1,5)
|
extreme points of f(x)=sqrt(x^2+6x+34)
|
extreme\:points\:f(x)=\sqrt{x^{2}+6x+34}
|
inverse of f(x)=((x+2))/(x-3)
|
inverse\:f(x)=\frac{(x+2)}{x-3}
|
inverse of ((e^x+e^{-x})/2)
|
inverse\:(\frac{e^{x}+e^{-x}}{2})
|
midpoint (0,0)(14,14)
|
midpoint\:(0,0)(14,14)
|
shift f(x)=-3cos(1/3 x-pi)+4
|
shift\:f(x)=-3\cos(\frac{1}{3}x-\pi)+4
|
asymptotes of f(x)=(x^2-x-12)/(2x-8)
|
asymptotes\:f(x)=\frac{x^{2}-x-12}{2x-8}
|
intercepts of (x^2-4)/(3x^2+x-4)
|
intercepts\:\frac{x^{2}-4}{3x^{2}+x-4}
|
range of-x^2-5
|
range\:-x^{2}-5
|
asymptotes of f(x)= 1/(-2x^2+2x+12)
|
asymptotes\:f(x)=\frac{1}{-2x^{2}+2x+12}
|
asymptotes of f(x)=-1/(x+5)
|
asymptotes\:f(x)=-\frac{1}{x+5}
|
intercepts of f(x)=3tan(2x-8pi)+3
|
intercepts\:f(x)=3\tan(2x-8\pi)+3
|
domain of sqrt(4x-5)
|
domain\:\sqrt{4x-5}
|
intercepts of f(x)=x^2-150
|
intercepts\:f(x)=x^{2}-150
|
critical points of 1/(1+e^{-x)}
|
critical\:points\:\frac{1}{1+e^{-x}}
|
range of f(x)=-x^2-2x-1
|
range\:f(x)=-x^{2}-2x-1
|
asymptotes of (2x)/(x^2-9)
|
asymptotes\:\frac{2x}{x^{2}-9}
|
f(x)=-2
|
f(x)=-2
|
range of 2x^2
|
range\:2x^{2}
|
asymptotes of 1/(5-x)
|
asymptotes\:\frac{1}{5-x}
|
distance (0,0)(-3,4)
|
distance\:(0,0)(-3,4)
|
inverse of f(x)=9(2/x)-4
|
inverse\:f(x)=9(\frac{2}{x})-4
|
intercepts of y=-1/2 tan(2pi x)
|
intercepts\:y=-\frac{1}{2}\tan(2\pi\:x)
|
slope of 10x+15y=-90
|
slope\:10x+15y=-90
|
critical points of f(x)=(x-7)^{6/7}
|
critical\:points\:f(x)=(x-7)^{\frac{6}{7}}
|
inverse of f(x)=((4-3x))/(2x)
|
inverse\:f(x)=\frac{(4-3x)}{2x}
|
domain of f(x)=\sqrt[4]{x^2-8x}
|
domain\:f(x)=\sqrt[4]{x^{2}-8x}
|
range of f(x)=x^3-7
|
range\:f(x)=x^{3}-7
|
critical points of f(x)=16x-4x^2
|
critical\:points\:f(x)=16x-4x^{2}
|
slope of 2x-3y-12=0
|
slope\:2x-3y-12=0
|
domain of (4x-1)/(sqrt(5-x))
|
domain\:\frac{4x-1}{\sqrt{5-x}}
|
range of 4x^2+7
|
range\:4x^{2}+7
|
parallel 8x-y=-16,\at (0,0)
|
parallel\:8x-y=-16,\at\:(0,0)
|
domain of (2x)/(x-6)
|
domain\:\frac{2x}{x-6}
|
range of f(x)=(x-1)^2
|
range\:f(x)=(x-1)^{2}
|
intercepts of f(x)=-x^2-4x+12
|
intercepts\:f(x)=-x^{2}-4x+12
|
inflection points of x+1+1/(x^2-1)
|
inflection\:points\:x+1+\frac{1}{x^{2}-1}
|
domain of f(x)=(x^2-6x)^2-6(x^2-6x)
|
domain\:f(x)=(x^{2}-6x)^{2}-6(x^{2}-6x)
|
midpoint (0,0)(d,p)
|
midpoint\:(0,0)(d,p)
|
intercepts of (2x)/(x^2-3x-4)
|
intercepts\:\frac{2x}{x^{2}-3x-4}
|
parity f(x)=x^3-6
|
parity\:f(x)=x^{3}-6
|
intercepts of f(x)=-x^2-4x+3
|
intercepts\:f(x)=-x^{2}-4x+3
|