range of 2e^x+1
|
range\:2e^{x}+1
|
parity f(x)=x^3+2x^2+1
|
parity\:f(x)=x^{3}+2x^{2}+1
|
range of 3x^2-5x+7
|
range\:3x^{2}-5x+7
|
parity tan^2(x)
|
parity\:\tan^{2}(x)
|
domain of (2x^2+2)^3(x^2-1)^2
|
domain\:(2x^{2}+2)^{3}(x^{2}-1)^{2}
|
domain of f(x)=(\sqrt[3]{x^5+3x-3})/(3x-2)
|
domain\:f(x)=\frac{\sqrt[3]{x^{5}+3x-3}}{3x-2}
|
domain of log_{10}(2-x)
|
domain\:\log_{10}(2-x)
|
midpoint (-1,2)(-1,-4)
|
midpoint\:(-1,2)(-1,-4)
|
intercepts of 2x^2-5x-3
|
intercepts\:2x^{2}-5x-3
|
inverse of-(x-1)^3+2
|
inverse\:-(x-1)^{3}+2
|
inflection points of f(x)=(x+4)^{4/7}
|
inflection\:points\:f(x)=(x+4)^{\frac{4}{7}}
|
extreme points of-x^3+12x-15
|
extreme\:points\:-x^{3}+12x-15
|
slope of (6,-1)4
|
slope\:(6,-1)4
|
domain of \sqrt[5]{2x+1}
|
domain\:\sqrt[5]{2x+1}
|
inverse of log_{6}(x-2)
|
inverse\:\log_{6}(x-2)
|
range of \sqrt[3]{x-1}-1
|
range\:\sqrt[3]{x-1}-1
|
shift 8sin(7x-21)+6
|
shift\:8\sin(7x-21)+6
|
domain of f(x)=sqrt(4x-28)
|
domain\:f(x)=\sqrt{4x-28}
|
slope of y=4x+1
|
slope\:y=4x+1
|
inverse of f(x)=3x^3+16
|
inverse\:f(x)=3x^{3}+16
|
domain of = 1/(sqrt(x+9))
|
domain\:=\frac{1}{\sqrt{x+9}}
|
inverse of f(x)=log_{3}(9x)
|
inverse\:f(x)=\log_{3}(9x)
|
perpendicular y=-4x+3
|
perpendicular\:y=-4x+3
|
critical points of x^2e^{15x}
|
critical\:points\:x^{2}e^{15x}
|
inverse of (9x)/(3-x)
|
inverse\:\frac{9x}{3-x}
|
intercepts of f(x)=(2x)/(x-3)
|
intercepts\:f(x)=\frac{2x}{x-3}
|
midpoint (7,7)(10,1)
|
midpoint\:(7,7)(10,1)
|
asymptotes of (e^x)/x
|
asymptotes\:\frac{e^{x}}{x}
|
range of f(x)=[x^2-4]
|
range\:f(x)=[x^{2}-4]
|
domain of f(x)=x+1
|
domain\:f(x)=x+1
|
critical points of f(x)=(x-2)ex
|
critical\:points\:f(x)=(x-2)ex
|
inverse of f(x)=(x-1)^2-3
|
inverse\:f(x)=(x-1)^{2}-3
|
domain of (2x^2-3)/(x^2+2x+1)
|
domain\:\frac{2x^{2}-3}{x^{2}+2x+1}
|
slope intercept of (y+2)= 1/3 (x+9)
|
slope\:intercept\:(y+2)=\frac{1}{3}(x+9)
|
inverse of f(x)=(5x)/4
|
inverse\:f(x)=\frac{5x}{4}
|
domain of 6x^3+9/x
|
domain\:6x^{3}+\frac{9}{x}
|
domain of f(x)=ln(5-2x)
|
domain\:f(x)=\ln(5-2x)
|
inverse of f(x)=(3x-4)/(x+2)
|
inverse\:f(x)=\frac{3x-4}{x+2}
|
line x=-1
|
line\:x=-1
|
domain of f(x)= 8/x
|
domain\:f(x)=\frac{8}{x}
|
extreme points of f(x)=e^{-x^2}
|
extreme\:points\:f(x)=e^{-x^{2}}
|
slope of-3x+8y=4
|
slope\:-3x+8y=4
|
range of 3/x+2
|
range\:\frac{3}{x}+2
|
asymptotes of f(x)= 7/(x^2+49)
|
asymptotes\:f(x)=\frac{7}{x^{2}+49}
|
range of f(x)=sqrt(x+2)-3
|
range\:f(x)=\sqrt{x+2}-3
|
midpoint (13,10)(3,-2)
|
midpoint\:(13,10)(3,-2)
|
domain of f(x)=(x-2)/((x-2)^2)
|
domain\:f(x)=\frac{x-2}{(x-2)^{2}}
|
extreme points of f(x)=x^4-8x^2+16
|
extreme\:points\:f(x)=x^{4}-8x^{2}+16
|
inverse of f(x)=\sqrt[3]{x+2}-1
|
inverse\:f(x)=\sqrt[3]{x+2}-1
|
domain of f(x)= 1/x-3
|
domain\:f(x)=\frac{1}{x}-3
|
critical points of (x-1)/(x^2+3)
|
critical\:points\:\frac{x-1}{x^{2}+3}
|
domain of f(x)=sqrt((2x-1)/(x+3))
|
domain\:f(x)=\sqrt{\frac{2x-1}{x+3}}
|
range of f(x)=(x+6)/(2x-4)
|
range\:f(x)=\frac{x+6}{2x-4}
|
inverse of f(x)=x^2+4x-3
|
inverse\:f(x)=x^{2}+4x-3
|
extreme points of f(x)=x^3-3x+27
|
extreme\:points\:f(x)=x^{3}-3x+27
|
range of 3sin(x)
|
range\:3\sin(x)
|
extreme points of f(x)=1-x
|
extreme\:points\:f(x)=1-x
|
intercepts of f(x)=(x+1)/(x^2-3x-4)
|
intercepts\:f(x)=\frac{x+1}{x^{2}-3x-4}
|
perpendicular y=6x-3
|
perpendicular\:y=6x-3
|
extreme points of f(x)=6sqrt(x^2+1)-x
|
extreme\:points\:f(x)=6\sqrt{x^{2}+1}-x
|
domain of f(x)=ln(x+2)+ln(x-2)
|
domain\:f(x)=\ln(x+2)+\ln(x-2)
|
range of x^3+16
|
range\:x^{3}+16
|
slope of 3x+20=-4y
|
slope\:3x+20=-4y
|
f(x)= 1/(x+2)
|
f(x)=\frac{1}{x+2}
|
range of f(x)=(x-7)^2
|
range\:f(x)=(x-7)^{2}
|
domain of sqrt(3x-15)
|
domain\:\sqrt{3x-15}
|
symmetry f(x)=x^2-8x+15
|
symmetry\:f(x)=x^{2}-8x+15
|
inverse of f(x)=2^x-1
|
inverse\:f(x)=2^{x}-1
|
domain of 16x^3
|
domain\:16x^{3}
|
line (3,0)(0,-7)
|
line\:(3,0)(0,-7)
|
inverse of f(x)=(3x^4-4)/(x^2)
|
inverse\:f(x)=\frac{3x^{4}-4}{x^{2}}
|
distance (3,4)(-2,-1)
|
distance\:(3,4)(-2,-1)
|
inverse of 3x^2+3
|
inverse\:3x^{2}+3
|
inverse of f(x)=(7x)/(3x-8)
|
inverse\:f(x)=\frac{7x}{3x-8}
|
critical points of f(x)=4x^3
|
critical\:points\:f(x)=4x^{3}
|
symmetry 5x^2-20x+2=0
|
symmetry\:5x^{2}-20x+2=0
|
domain of x^2+81
|
domain\:x^{2}+81
|
domain of f(x)=(-4x-3)/(x-2)
|
domain\:f(x)=\frac{-4x-3}{x-2}
|
slope intercept of 2y-x=-6
|
slope\:intercept\:2y-x=-6
|
domain of f(x)=sqrt(((x+1))/(x-2))
|
domain\:f(x)=\sqrt{\frac{(x+1)}{x-2}}
|
parity f(x)=(-6x+2)/(sin(x))
|
parity\:f(x)=\frac{-6x+2}{\sin(x)}
|
domain of x^2+6x+5
|
domain\:x^{2}+6x+5
|
critical points of f(x)=2x+4/x
|
critical\:points\:f(x)=2x+\frac{4}{x}
|
inverse of f(x)= 4/(x+1)
|
inverse\:f(x)=\frac{4}{x+1}
|
periodicity of y=3cos(2x)
|
periodicity\:y=3\cos(2x)
|
inverse of f(x)=7x+3
|
inverse\:f(x)=7x+3
|
domain of f(x)=log_{2}(1-|1-x|)
|
domain\:f(x)=\log_{2}(1-|1-x|)
|
domain of (3x+3)/(2x+4)
|
domain\:\frac{3x+3}{2x+4}
|
asymptotes of f(x)=(1+2x^2)/(5x+3x^2)
|
asymptotes\:f(x)=\frac{1+2x^{2}}{5x+3x^{2}}
|
domain of (1-7x)/9
|
domain\:\frac{1-7x}{9}
|
intercepts of f(x)=2x^2+3x-3
|
intercepts\:f(x)=2x^{2}+3x-3
|
intercepts of f(x)=2y-4=7x
|
intercepts\:f(x)=2y-4=7x
|
monotone intervals (x^2)/(x^2-9)
|
monotone\:intervals\:\frac{x^{2}}{x^{2}-9}
|
domain of \sqrt[3]{x}(1+x^3)
|
domain\:\sqrt[3]{x}(1+x^{3})
|
slope of x+4y=12
|
slope\:x+4y=12
|
domain of f(x)=(2x^2-3)/(x^2+1)
|
domain\:f(x)=\frac{2x^{2}-3}{x^{2}+1}
|
domain of sqrt(x)-6
|
domain\:\sqrt{x}-6
|
slope intercept of y= 23/5 x-12
|
slope\:intercept\:y=\frac{23}{5}x-12
|
inverse of f(x)=((x+6))/(x-2)
|
inverse\:f(x)=\frac{(x+6)}{x-2}
|
range of f(x)=-5(x+1)^2-5
|
range\:f(x)=-5(x+1)^{2}-5
|