domain of f(x)=(sqrt(x-2))/(x-3)
|
domain\:f(x)=\frac{\sqrt{x-2}}{x-3}
|
extreme points of f(x)=(x^2-36)^{1/3}
|
extreme\:points\:f(x)=(x^{2}-36)^{\frac{1}{3}}
|
intercepts of f(x)=460x-11040
|
intercepts\:f(x)=460x-11040
|
extreme points of f(x)=4x^3-3x^4
|
extreme\:points\:f(x)=4x^{3}-3x^{4}
|
domain of 3-x^2
|
domain\:3-x^{2}
|
y=2x-6
|
y=2x-6
|
inverse of \sqrt[3]{x^5-2}
|
inverse\:\sqrt[3]{x^{5}-2}
|
inflection points of 1+1/x-2/(x^3)
|
inflection\:points\:1+\frac{1}{x}-\frac{2}{x^{3}}
|
intercepts of x^3-23.47x^2+223.6
|
intercepts\:x^{3}-23.47x^{2}+223.6
|
inverse of f(x)=-8/27 x^3
|
inverse\:f(x)=-\frac{8}{27}x^{3}
|
asymptotes of r(x)=(2x-3)/(x^2+x+1)
|
asymptotes\:r(x)=\frac{2x-3}{x^{2}+x+1}
|
asymptotes of (x^2+10x+24)/(x-6)
|
asymptotes\:\frac{x^{2}+10x+24}{x-6}
|
range of 2cos(x)
|
range\:2\cos(x)
|
domain of 9/4 x-5
|
domain\:\frac{9}{4}x-5
|
asymptotes of f(x)=2(4/5)^x
|
asymptotes\:f(x)=2(\frac{4}{5})^{x}
|
parallel y=4-2x,\at (2,-1)
|
parallel\:y=4-2x,\at\:(2,-1)
|
midpoint (3,6)(-4,-1)
|
midpoint\:(3,6)(-4,-1)
|
inverse of 3x+10
|
inverse\:3x+10
|
intercepts of f(x)=x^2-9
|
intercepts\:f(x)=x^{2}-9
|
domain of (2x+7)/(x-8)
|
domain\:\frac{2x+7}{x-8}
|
asymptotes of f(x)=(2x^2)/(x^2-8x+16)
|
asymptotes\:f(x)=\frac{2x^{2}}{x^{2}-8x+16}
|
asymptotes of f(x)=(x^2-3x-5)/(x+2)
|
asymptotes\:f(x)=\frac{x^{2}-3x-5}{x+2}
|
inverse of 1/(s+2)
|
inverse\:\frac{1}{s+2}
|
slope intercept of (4,9)5x+y=6
|
slope\:intercept\:(4,9)5x+y=6
|
parity sin(x)+cos(x)
|
parity\:\sin(x)+\cos(x)
|
extreme points of f(x)=x^4-7x^2+8
|
extreme\:points\:f(x)=x^{4}-7x^{2}+8
|
slope intercept of y-3= 5/3 (x-6)
|
slope\:intercept\:y-3=\frac{5}{3}(x-6)
|
domain of f(x)= 6/(sqrt(16-x^2))
|
domain\:f(x)=\frac{6}{\sqrt{16-x^{2}}}
|
extreme points of f(x)=8x^3-6x+7
|
extreme\:points\:f(x)=8x^{3}-6x+7
|
inverse of f(x)=2\sqrt[3]{x-5}
|
inverse\:f(x)=2\sqrt[3]{x-5}
|
domain of f(x)=-(x+1)(x-2)(x-3)
|
domain\:f(x)=-(x+1)(x-2)(x-3)
|
inverse of f(x)=7x^3-3
|
inverse\:f(x)=7x^{3}-3
|
line (7,6)\land (5,3)
|
line\:(7,6)\land\:(5,3)
|
asymptotes of f(x)=(x^2+x-6)/(x^3-1)
|
asymptotes\:f(x)=\frac{x^{2}+x-6}{x^{3}-1}
|
domain of f(x)=sqrt(-x-7)
|
domain\:f(x)=\sqrt{-x-7}
|
intercepts of f(x)=6x^4-x^3-25x^2+4x+4
|
intercepts\:f(x)=6x^{4}-x^{3}-25x^{2}+4x+4
|
asymptotes of (x^2+4)/x
|
asymptotes\:\frac{x^{2}+4}{x}
|
domain of f(x)=(2x^2+10x+12)/(x^2+3x+2)
|
domain\:f(x)=\frac{2x^{2}+10x+12}{x^{2}+3x+2}
|
asymptotes of f(x)=(e^x)/(3+e^x)
|
asymptotes\:f(x)=\frac{e^{x}}{3+e^{x}}
|
critical points of (4x)/(x^2+1)
|
critical\:points\:\frac{4x}{x^{2}+1}
|
intercepts of f(x)=(x-2)/(x^2-2x-3)
|
intercepts\:f(x)=\frac{x-2}{x^{2}-2x-3}
|
intercepts of ln|x|
|
intercepts\:\ln|x|
|
slope intercept of 4x+2y=-12
|
slope\:intercept\:4x+2y=-12
|
inverse of f(x)= 1/5 x^3-2
|
inverse\:f(x)=\frac{1}{5}x^{3}-2
|
inverse of f(x)=-3*2^x+5
|
inverse\:f(x)=-3\cdot\:2^{x}+5
|
domain of f(x)=-sqrt(x+1)
|
domain\:f(x)=-\sqrt{x+1}
|
inverse of f(x)=e^{4x-5}
|
inverse\:f(x)=e^{4x-5}
|
perpendicular Y=3x+9,\at 9(-2,3)
|
perpendicular\:Y=3x+9,\at\:9(-2,3)
|
inverse of f(x)=8x-2
|
inverse\:f(x)=8x-2
|
domain of f(x)=9x-7
|
domain\:f(x)=9x-7
|
inverse of e^x+2e^{2x}
|
inverse\:e^{x}+2e^{2x}
|
domain of f(x)= 1/7 x^2
|
domain\:f(x)=\frac{1}{7}x^{2}
|
asymptotes of f(x)=(x^2-25)/(x-5)
|
asymptotes\:f(x)=\frac{x^{2}-25}{x-5}
|
slope of-1/4 (9,-2)
|
slope\:-\frac{1}{4}(9,-2)
|
midpoint (-2,-3)(-3,1)
|
midpoint\:(-2,-3)(-3,1)
|
extreme points of f(x)=-12x^2+156x
|
extreme\:points\:f(x)=-12x^{2}+156x
|
asymptotes of f(x)= 2/(x+1)
|
asymptotes\:f(x)=\frac{2}{x+1}
|
periodicity of y=sin(6x)
|
periodicity\:y=\sin(6x)
|
inverse of f(x)=(2x+9)/(2x-7)
|
inverse\:f(x)=\frac{2x+9}{2x-7}
|
inverse of f(x)=((x+5))/(x-6)
|
inverse\:f(x)=\frac{(x+5)}{x-6}
|
domain of y=e^x
|
domain\:y=e^{x}
|
domain of-(2x)/((x+1)^2(x-1)^2)
|
domain\:-\frac{2x}{(x+1)^{2}(x-1)^{2}}
|
range of f(x)=log_{2}(x)
|
range\:f(x)=\log_{2}(x)
|
inflection points of 18x^4-108x^2
|
inflection\:points\:18x^{4}-108x^{2}
|
slope of-6x-2y=7
|
slope\:-6x-2y=7
|
domain of f(x)=-1
|
domain\:f(x)=-1
|
domain of f(x)= x/(x^2+64)
|
domain\:f(x)=\frac{x}{x^{2}+64}
|
inverse of g(x)=x^2+4
|
inverse\:g(x)=x^{2}+4
|
inverse of f(x)= x/(x-1)
|
inverse\:f(x)=\frac{x}{x-1}
|
domain of f(x)=sqrt(x^2-5x+4)
|
domain\:f(x)=\sqrt{x^{2}-5x+4}
|
asymptotes of f(x)=(3x-8)/(2x+1)
|
asymptotes\:f(x)=\frac{3x-8}{2x+1}
|
4x^2+12x+3
|
4x^{2}+12x+3
|
asymptotes of f(x)=-1+3sec((pi)/2 (x+1))
|
asymptotes\:f(x)=-1+3\sec(\frac{\pi}{2}(x+1))
|
inverse of f(x)=2x^2-4
|
inverse\:f(x)=2x^{2}-4
|
perpendicular 2x+y=4,\at (1,2)
|
perpendicular\:2x+y=4,\at\:(1,2)
|
domain of 2/(x-2)
|
domain\:\frac{2}{x-2}
|
slope intercept of y-3x=19
|
slope\:intercept\:y-3x=19
|
range of (x-2)^2+1
|
range\:(x-2)^{2}+1
|
inverse of f(x)=x^2+5,x>= 0
|
inverse\:f(x)=x^{2}+5,x\ge\:0
|
range of f(x)=5csc(1/3 x)-1
|
range\:f(x)=5\csc(\frac{1}{3}x)-1
|
line (1,2)(5,6)
|
line\:(1,2)(5,6)
|
range of 2/(x-2)-8
|
range\:\frac{2}{x-2}-8
|
parity 3/(x+2)-sqrt(x-3)
|
parity\:\frac{3}{x+2}-\sqrt{x-3}
|
asymptotes of f(x)=(x^2)/(x+3)
|
asymptotes\:f(x)=\frac{x^{2}}{x+3}
|
range of ln(x-1)-1
|
range\:\ln(x-1)-1
|
range of f(x)=(4x^2+4x-1)/(2x^3+8x^2)
|
range\:f(x)=\frac{4x^{2}+4x-1}{2x^{3}+8x^{2}}
|
inverse of f(x)= x/(x+5)
|
inverse\:f(x)=\frac{x}{x+5}
|
inverse of f(x)=(1.05)^x
|
inverse\:f(x)=(1.05)^{x}
|
symmetry y=x^2+6x+4
|
symmetry\:y=x^{2}+6x+4
|
inverse of f(x)= 1/((x+9))
|
inverse\:f(x)=\frac{1}{(x+9)}
|
domain of f(x)= 1/(x+15)
|
domain\:f(x)=\frac{1}{x+15}
|
midpoint (7,-2),(-5,-2)
|
midpoint\:(7,-2),(-5,-2)
|
inverse of f(x)=x^3-5
|
inverse\:f(x)=x^{3}-5
|
perpendicular y=2x+3,\at 1,2
|
perpendicular\:y=2x+3,\at\:1,2
|
domain of f(x)=((2x^3-5))/(x^2+x-6)
|
domain\:f(x)=\frac{(2x^{3}-5)}{x^{2}+x-6}
|
extreme points of f(x)= x/(x^2+1)
|
extreme\:points\:f(x)=\frac{x}{x^{2}+1}
|
inverse of y=f(x)=(2-5x)/(6-6x)
|
inverse\:y=f(x)=\frac{2-5x}{6-6x}
|
range of f(x)=6x
|
range\:f(x)=6x
|
domain of (2x)/(x^2+2x)
|
domain\:\frac{2x}{x^{2}+2x}
|
domain of 6/(\frac{x){x+6}}
|
domain\:\frac{6}{\frac{x}{x+6}}
|