intercepts of (3x-8)/(2x+1)
|
intercepts\:\frac{3x-8}{2x+1}
|
asymptotes of f(x)=(x^2-25)/(-2x^2-10x)
|
asymptotes\:f(x)=\frac{x^{2}-25}{-2x^{2}-10x}
|
perpendicular y= 5/2 x-8
|
perpendicular\:y=\frac{5}{2}x-8
|
asymptotes of f(x)=(x^2-5x+3)/(x-3)
|
asymptotes\:f(x)=\frac{x^{2}-5x+3}{x-3}
|
asymptotes of f(x)=(2x)/(x^2-16)
|
asymptotes\:f(x)=\frac{2x}{x^{2}-16}
|
domain of sqrt(x)*7-x
|
domain\:\sqrt{x}\cdot\:7-x
|
symmetry 36x^2+y^2=36
|
symmetry\:36x^{2}+y^{2}=36
|
domain of f(x)=7
|
domain\:f(x)=7
|
midpoint (5,6)(-5,-2)
|
midpoint\:(5,6)(-5,-2)
|
inverse of f(x)=((5x+4))/(8x-7)
|
inverse\:f(x)=\frac{(5x+4)}{8x-7}
|
extreme points of f(x)=2\sqrt[3]{x}-4
|
extreme\:points\:f(x)=2\sqrt[3]{x}-4
|
slope of y= 7/3 x-2
|
slope\:y=\frac{7}{3}x-2
|
intercepts of f(x)=(5x)/(x^2+16)
|
intercepts\:f(x)=\frac{5x}{x^{2}+16}
|
domain of-x^2-2x-1
|
domain\:-x^{2}-2x-1
|
asymptotes of f(x)=(3x+2)/(x-5)
|
asymptotes\:f(x)=\frac{3x+2}{x-5}
|
domain of f(x)=(sqrt(2x-8))/(x^2-9)
|
domain\:f(x)=\frac{\sqrt{2x-8}}{x^{2}-9}
|
midpoint (-5,5)(2,-3)
|
midpoint\:(-5,5)(2,-3)
|
inverse of f(x)=x^3-10
|
inverse\:f(x)=x^{3}-10
|
extreme points of f(x)=(x^3)/3-2x^2-5x
|
extreme\:points\:f(x)=\frac{x^{3}}{3}-2x^{2}-5x
|
inverse of 6x^2
|
inverse\:6x^{2}
|
line (0,4)(1,1)
|
line\:(0,4)(1,1)
|
inverse of y=ln(x)
|
inverse\:y=\ln(x)
|
domain of 2x-9
|
domain\:2x-9
|
range of sec(x)
|
range\:\sec(x)
|
parallel 2x+54=4x-6
|
parallel\:2x+54=4x-6
|
inverse of y=2x-5
|
inverse\:y=2x-5
|
asymptotes of f(x)= 1/(x+5)-2
|
asymptotes\:f(x)=\frac{1}{x+5}-2
|
asymptotes of f(x)=(x^2-25)/(x-4)
|
asymptotes\:f(x)=\frac{x^{2}-25}{x-4}
|
domain of sqrt(3x)-sqrt(x+6)
|
domain\:\sqrt{3x}-\sqrt{x+6}
|
inverse of f(x)=(x+5)/(x-10)
|
inverse\:f(x)=\frac{x+5}{x-10}
|
domain of f(x)= x/((x^2+14x+45))
|
domain\:f(x)=\frac{x}{(x^{2}+14x+45)}
|
parallel 5x+7y=8,\at (5,-2)
|
parallel\:5x+7y=8,\at\:(5,-2)
|
intercepts of (1/2)^{x+3}
|
intercepts\:(\frac{1}{2})^{x+3}
|
inflection points of f(x)= 7/(x-7)
|
inflection\:points\:f(x)=\frac{7}{x-7}
|
inflection points of f(x)= 6/(x^2)
|
inflection\:points\:f(x)=\frac{6}{x^{2}}
|
slope of 75(92.5)+55
|
slope\:75(92.5)+55
|
periodicity of f(x)=cos(4pi x+pi)
|
periodicity\:f(x)=\cos(4\pi\:x+\pi)
|
domain of =21x-20
|
domain\:=21x-20
|
asymptotes of ln(x+2)
|
asymptotes\:\ln(x+2)
|
inverse of g(x)=-2
|
inverse\:g(x)=-2
|
domain of f(x)=3x^2+1
|
domain\:f(x)=3x^{2}+1
|
slope intercept of-5/2
|
slope\:intercept\:-\frac{5}{2}
|
domain of f(x)=((x+4))/(x+6)
|
domain\:f(x)=\frac{(x+4)}{x+6}
|
asymptotes of y=(x^2)/((2-2x))
|
asymptotes\:y=\frac{x^{2}}{(2-2x)}
|
symmetry 2x^2-x+7
|
symmetry\:2x^{2}-x+7
|
asymptotes of 1/(x+4)
|
asymptotes\:\frac{1}{x+4}
|
domain of f(x)=log_{8}(x-8)
|
domain\:f(x)=\log_{8}(x-8)
|
parallel x=10,(4,-9)
|
parallel\:x=10,(4,-9)
|
range of f(x)=(10x+40)/(x-5)
|
range\:f(x)=\frac{10x+40}{x-5}
|
asymptotes of f(x)=(4x)/(x^2-1)
|
asymptotes\:f(x)=\frac{4x}{x^{2}-1}
|
line (1,-9.5),(4,-4.5)
|
line\:(1,-9.5),(4,-4.5)
|
domain of f(x)=sqrt(6+x-x^2)
|
domain\:f(x)=\sqrt{6+x-x^{2}}
|
inflection points of (x^2)/(6x^2+4)
|
inflection\:points\:\frac{x^{2}}{6x^{2}+4}
|
domain of f(x)=(5-x)/(x(x-4))
|
domain\:f(x)=\frac{5-x}{x(x-4)}
|
inverse of g(x)=x^2-3
|
inverse\:g(x)=x^{2}-3
|
symmetry (x^2-2x-1)/(x+1)
|
symmetry\:\frac{x^{2}-2x-1}{x+1}
|
line (1,0)(0,-1)
|
line\:(1,0)(0,-1)
|
intercepts of f(x)=(x+1)^2(x-3)^5(x-2)
|
intercepts\:f(x)=(x+1)^{2}(x-3)^{5}(x-2)
|
midpoint (-1,-9)(4,-7)
|
midpoint\:(-1,-9)(4,-7)
|
inverse of y=3^{2x+4}+3
|
inverse\:y=3^{2x+4}+3
|
intercepts of f(x)=-3x^2+6x-1
|
intercepts\:f(x)=-3x^{2}+6x-1
|
domain of f(t)=((1-e^{-2t})/t)
|
domain\:f(t)=(\frac{1-e^{-2t}}{t})
|
inverse of y=3^x-1
|
inverse\:y=3^{x}-1
|
asymptotes of f(x)=x^4-2x^2-8
|
asymptotes\:f(x)=x^{4}-2x^{2}-8
|
distance (3,4),(11,17)
|
distance\:(3,4),(11,17)
|
domain of f(x)=2sqrt(x)-x
|
domain\:f(x)=2\sqrt{x}-x
|
range of sqrt((x-1)/(4x+3))
|
range\:\sqrt{\frac{x-1}{4x+3}}
|
asymptotes of f(x)=(x^2)/(x^4-81)
|
asymptotes\:f(x)=\frac{x^{2}}{x^{4}-81}
|
parity 7tan(1.55-0.31t)dt
|
parity\:7\tan(1.55-0.31t)dt
|
midpoint (8,10)(2,6)
|
midpoint\:(8,10)(2,6)
|
asymptotes of f(x)=(sqrt(1-x^2))/(2x+1)
|
asymptotes\:f(x)=\frac{\sqrt{1-x^{2}}}{2x+1}
|
domain of f(x)=(sqrt(x+4))/(x-3)
|
domain\:f(x)=\frac{\sqrt{x+4}}{x-3}
|
slope intercept of 1x+1y=2
|
slope\:intercept\:1x+1y=2
|
extreme points of f(x)=x^2-3x-2
|
extreme\:points\:f(x)=x^{2}-3x-2
|
domain of f(x)= 5/(x-8)
|
domain\:f(x)=\frac{5}{x-8}
|
asymptotes of f(x)=(2x+3)/(x+4)
|
asymptotes\:f(x)=\frac{2x+3}{x+4}
|
critical points of 8x^{1/3}+x^{4/3}
|
critical\:points\:8x^{\frac{1}{3}}+x^{\frac{4}{3}}
|
critical points of f(x)=(x^2-7)/(16-x^2)
|
critical\:points\:f(x)=\frac{x^{2}-7}{16-x^{2}}
|
intercepts of f(x)=2x^2-5x+1
|
intercepts\:f(x)=2x^{2}-5x+1
|
domain of 4/(x^2+x-2)
|
domain\:\frac{4}{x^{2}+x-2}
|
extreme points of-sqrt(9-x^2)
|
extreme\:points\:-\sqrt{9-x^{2}}
|
intercepts of-2(x-3)^2+7
|
intercepts\:-2(x-3)^{2}+7
|
inverse of f(x)=(x^5+10)/3
|
inverse\:f(x)=\frac{x^{5}+10}{3}
|
intercepts of f(x)=2x-4
|
intercepts\:f(x)=2x-4
|
inverse of f(x)=6-8x
|
inverse\:f(x)=6-8x
|
domain of f(x)=(2x-1)^2
|
domain\:f(x)=(2x-1)^{2}
|
domain of f(x)=sqrt(x-1)+sqrt(x-2)
|
domain\:f(x)=\sqrt{x-1}+\sqrt{x-2}
|
range of 6/(x+1)
|
range\:\frac{6}{x+1}
|
domain of f(x)= 1/(|4-8x|+12)
|
domain\:f(x)=\frac{1}{|4-8x|+12}
|
line (1,6)(5,-2)
|
line\:(1,6)(5,-2)
|
intercepts of f(x)=x^2+8x=-11
|
intercepts\:f(x)=x^{2}+8x=-11
|
inflection points of f(x)= 1/(x-2)
|
inflection\:points\:f(x)=\frac{1}{x-2}
|
domain of f(x)=sqrt(36-x^2)-sqrt(x+1)
|
domain\:f(x)=\sqrt{36-x^{2}}-\sqrt{x+1}
|
line (3.58,1.413)(4,12.88)
|
line\:(3.58,1.413)(4,12.88)
|
monotone intervals (x^2+6)(36-x^2)
|
monotone\:intervals\:(x^{2}+6)(36-x^{2})
|
range of f(x)=2x^2-6x+5
|
range\:f(x)=2x^{2}-6x+5
|
periodicity of f(x)=6sin((4pi)/3 x)+1
|
periodicity\:f(x)=6\sin(\frac{4\pi}{3}x)+1
|
inverse of h(x)=2x^3+3
|
inverse\:h(x)=2x^{3}+3
|
domain of f(x)=(x+8)^2
|
domain\:f(x)=(x+8)^{2}
|
domain of f(x)=(sqrt(x+39))/(x-3)
|
domain\:f(x)=\frac{\sqrt{x+39}}{x-3}
|