domain of f(x)=log_{5}(x+3)
|
domain\:f(x)=\log_{5}(x+3)
|
slope of 3x-5y=8
|
slope\:3x-5y=8
|
range of x/(x+4)
|
range\:\frac{x}{x+4}
|
domain of (6x+7)/(5x-6)
|
domain\:\frac{6x+7}{5x-6}
|
asymptotes of f(x)= 5/x
|
asymptotes\:f(x)=\frac{5}{x}
|
inverse of f(x)=x^2-18x
|
inverse\:f(x)=x^{2}-18x
|
inverse of f(x)=600+70x
|
inverse\:f(x)=600+70x
|
slope of-x+4y=20
|
slope\:-x+4y=20
|
domain of f(x)=sqrt(t-36)
|
domain\:f(x)=\sqrt{t-36}
|
critical points of f(x)=(x+6)/(x+2)
|
critical\:points\:f(x)=\frac{x+6}{x+2}
|
domain of f(x)=(x+5)/(x^2-25)
|
domain\:f(x)=\frac{x+5}{x^{2}-25}
|
range of f(x)=4^{x-5}
|
range\:f(x)=4^{x-5}
|
domain of 2(1/2)^x-2
|
domain\:2(\frac{1}{2})^{x}-2
|
extreme points of x^3-6x^2+9x+2
|
extreme\:points\:x^{3}-6x^{2}+9x+2
|
domain of-sqrt(x)+4
|
domain\:-\sqrt{x}+4
|
symmetry-2(x+5)^2+8
|
symmetry\:-2(x+5)^{2}+8
|
perpendicular y=-2/3 x+1
|
perpendicular\:y=-\frac{2}{3}x+1
|
intercepts of f(x)=3x-5y=6
|
intercepts\:f(x)=3x-5y=6
|
inverse of f(x)=(x+2)/(x+7)
|
inverse\:f(x)=\frac{x+2}{x+7}
|
critical points of f(x)=x^4+8x^3-14x^2+3
|
critical\:points\:f(x)=x^{4}+8x^{3}-14x^{2}+3
|
domain of 11-x
|
domain\:11-x
|
slope of y= 1/3 x+4
|
slope\:y=\frac{1}{3}x+4
|
range of 4(1/5)^x
|
range\:4(\frac{1}{5})^{x}
|
domain of 117x^4-78x^3
|
domain\:117x^{4}-78x^{3}
|
inverse of (6x)/(7x-3)
|
inverse\:\frac{6x}{7x-3}
|
inverse of f(x)=(x+8)^{1/5}
|
inverse\:f(x)=(x+8)^{\frac{1}{5}}
|
asymptotes of f(x)=(x+1)/(x^2-2x+3)
|
asymptotes\:f(x)=\frac{x+1}{x^{2}-2x+3}
|
parity f(x)=e^x
|
parity\:f(x)=e^{x}
|
inverse of x^2+2x+3
|
inverse\:x^{2}+2x+3
|
range of f(x)=(2x^3+3)/(x^3-1)
|
range\:f(x)=\frac{2x^{3}+3}{x^{3}-1}
|
extreme points of f(x)=x^3-4x^2-16x+9
|
extreme\:points\:f(x)=x^{3}-4x^{2}-16x+9
|
critical points of f(x)=2sqrt(x)-4x
|
critical\:points\:f(x)=2\sqrt{x}-4x
|
domain of f(x)=sqrt(x-1)+1
|
domain\:f(x)=\sqrt{x-1}+1
|
domain of f(x)=sqrt(x)+sqrt((1-x))
|
domain\:f(x)=\sqrt{x}+\sqrt{(1-x)}
|
monotone intervals y=(x^2)/((x-2)^2)
|
monotone\:intervals\:y=\frac{x^{2}}{(x-2)^{2}}
|
slope of-2x-1
|
slope\:-2x-1
|
perpendicular y= 1/8 x+2,\at (1,-5)
|
perpendicular\:y=\frac{1}{8}x+2,\at\:(1,-5)
|
asymptotes of f(x)=(1+e^{-x})/(2e^x)
|
asymptotes\:f(x)=\frac{1+e^{-x}}{2e^{x}}
|
domain of sqrt(x+1)-1/(x^2+1)
|
domain\:\sqrt{x+1}-\frac{1}{x^{2}+1}
|
extreme points of sqrt(1-x^2)
|
extreme\:points\:\sqrt{1-x^{2}}
|
midpoint (-4,6)(8,-6)
|
midpoint\:(-4,6)(8,-6)
|
intercepts of f(x)=(x^2-1)/(x-2)
|
intercepts\:f(x)=\frac{x^{2}-1}{x-2}
|
inverse of h(x)=\sqrt[3]{x-3}
|
inverse\:h(x)=\sqrt[3]{x-3}
|
intercepts of f(x)=x^6-7x^3-8
|
intercepts\:f(x)=x^{6}-7x^{3}-8
|
line 2x+3y=5
|
line\:2x+3y=5
|
asymptotes of f(x)=(x-2)/(x^2+1)
|
asymptotes\:f(x)=\frac{x-2}{x^{2}+1}
|
inverse of 2+\sqrt[3]{2-3x}
|
inverse\:2+\sqrt[3]{2-3x}
|
domain of f(x)=0<= x<= 10
|
domain\:f(x)=0\le\:x\le\:10
|
symmetry y=-(x-5)^2-3
|
symmetry\:y=-(x-5)^{2}-3
|
domain of f(x)= 2/(4-3x+x^2)
|
domain\:f(x)=\frac{2}{4-3x+x^{2}}
|
parity x(sec^2(2x)*2)
|
parity\:x(\sec^{2}(2x)\cdot\:2)
|
domain of f(x)= 5/(2sqrt(x))
|
domain\:f(x)=\frac{5}{2\sqrt{x}}
|
midpoint (-1,5)(7,9)
|
midpoint\:(-1,5)(7,9)
|
line m= 2/9 ,\at (9,0)
|
line\:m=\frac{2}{9},\at\:(9,0)
|
slope of 12x+4y=47
|
slope\:12x+4y=47
|
intercepts of f(x)=((x+1))/(x-4)
|
intercepts\:f(x)=\frac{(x+1)}{x-4}
|
inverse of f(x)=(-2)/x-1
|
inverse\:f(x)=\frac{-2}{x}-1
|
inflection points of-1/(x^2+4)
|
inflection\:points\:-\frac{1}{x^{2}+4}
|
extreme points of f(x)=12x^2+2x^3
|
extreme\:points\:f(x)=12x^{2}+2x^{3}
|
monotone intervals x^2+1/x
|
monotone\:intervals\:x^{2}+\frac{1}{x}
|
inverse of (1-4x)/(2x+7)
|
inverse\:\frac{1-4x}{2x+7}
|
domain of x^2-x
|
domain\:x^{2}-x
|
domain of f(x)=log_{2}(3-|2-x|)
|
domain\:f(x)=\log_{2}(3-|2-x|)
|
inverse of x+sqrt(x)
|
inverse\:x+\sqrt{x}
|
asymptotes of f(x)=4x^3+5x^2
|
asymptotes\:f(x)=4x^{3}+5x^{2}
|
midpoint (-2,4)(3,-2)
|
midpoint\:(-2,4)(3,-2)
|
slope intercept of x-2y=4
|
slope\:intercept\:x-2y=4
|
parity f(x)=sin(pi x)
|
parity\:f(x)=\sin(\pi\:x)
|
critical points of f(x)=x^3+27x
|
critical\:points\:f(x)=x^{3}+27x
|
domain of sqrt(-3+x)
|
domain\:\sqrt{-3+x}
|
inverse of f(x)=sqrt(x+1)-5
|
inverse\:f(x)=\sqrt{x+1}-5
|
extreme points of f(x)=3x^{2/3}-2x
|
extreme\:points\:f(x)=3x^{\frac{2}{3}}-2x
|
inverse of (e^x)/(1+8e^x)
|
inverse\:\frac{e^{x}}{1+8e^{x}}
|
critical points of x^4-5x^3+x^2+21x-18
|
critical\:points\:x^{4}-5x^{3}+x^{2}+21x-18
|
asymptotes of f(x)= 1/(x-3)
|
asymptotes\:f(x)=\frac{1}{x-3}
|
intercepts of f(x)=3x^2-6x-1
|
intercepts\:f(x)=3x^{2}-6x-1
|
inverse of f(x)=(20-x)^{1/4}
|
inverse\:f(x)=(20-x)^{\frac{1}{4}}
|
line m=0,\at (-4,2)
|
line\:m=0,\at\:(-4,2)
|
parity f(x)=x^4-4x^2
|
parity\:f(x)=x^{4}-4x^{2}
|
range of f(x)=-e^x
|
range\:f(x)=-e^{x}
|
critical points of f(x)=(x^2)/(x-6)
|
critical\:points\:f(x)=\frac{x^{2}}{x-6}
|
range of f(x)=-x^3+6x+3
|
range\:f(x)=-x^{3}+6x+3
|
asymptotes of f(x)=(x^2-x-6)/(x^2+x-2)
|
asymptotes\:f(x)=\frac{x^{2}-x-6}{x^{2}+x-2}
|
range of (3x+8)/(2x-3)
|
range\:\frac{3x+8}{2x-3}
|
asymptotes of f(x)=(x+5)/(x^2)
|
asymptotes\:f(x)=\frac{x+5}{x^{2}}
|
asymptotes of f(x)=((8-2x))/(x+3)
|
asymptotes\:f(x)=\frac{(8-2x)}{x+3}
|
inverse of f(x)= x/(2x+5)
|
inverse\:f(x)=\frac{x}{2x+5}
|
domain of (-2e^t)/(1-2e^t)
|
domain\:\frac{-2e^{t}}{1-2e^{t}}
|
inverse of f(x)=sqrt(x+10)
|
inverse\:f(x)=\sqrt{x+10}
|
inverse of \sqrt[4]{2x-6}
|
inverse\:\sqrt[4]{2x-6}
|
line (7,0)(-2,6)
|
line\:(7,0)(-2,6)
|
inverse of f(x)=1650(1.022)^x
|
inverse\:f(x)=1650(1.022)^{x}
|
inverse of f(x)=-5-4/3 x
|
inverse\:f(x)=-5-\frac{4}{3}x
|
inverse of f(x)=sqrt(x-1)+3
|
inverse\:f(x)=\sqrt{x-1}+3
|
inverse of f(x)=x^2+8
|
inverse\:f(x)=x^{2}+8
|
domain of f(x)=-3x+3
|
domain\:f(x)=-3x+3
|
domain of f(x)=5(5x-1)-1
|
domain\:f(x)=5(5x-1)-1
|
intercepts of x^2+2x-2
|
intercepts\:x^{2}+2x-2
|
domain of f(x)=(sqrt(x-1))/(sqrt(x-5))
|
domain\:f(x)=\frac{\sqrt{x-1}}{\sqrt{x-5}}
|
inverse of f(x)=(sqrt(x^2-1))/x
|
inverse\:f(x)=\frac{\sqrt{x^{2}-1}}{x}
|