range of x^2-2x+3
|
range\:x^{2}-2x+3
|
asymptotes of x^2-4x+4
|
asymptotes\:x^{2}-4x+4
|
domain of 4x^2-18x+6
|
domain\:4x^{2}-18x+6
|
domain of y=(x-5)/(x^2-1)
|
domain\:y=\frac{x-5}{x^{2}-1}
|
critical points of f(x)=x-1/x
|
critical\:points\:f(x)=x-\frac{1}{x}
|
domain of f(x)=sqrt(2x-16)
|
domain\:f(x)=\sqrt{2x-16}
|
inflection points of f(x)=x^2(x-3)(x-6)
|
inflection\:points\:f(x)=x^{2}(x-3)(x-6)
|
range of sqrt(x+3)-2
|
range\:\sqrt{x+3}-2
|
slope intercept of 3x+3y=-18
|
slope\:intercept\:3x+3y=-18
|
perpendicular y=-1/4 x+5
|
perpendicular\:y=-\frac{1}{4}x+5
|
domain of g(x)=sqrt(x-6)
|
domain\:g(x)=\sqrt{x-6}
|
parity sqrt(t^2+16sin^2(t)+16cos^2(t))
|
parity\:\sqrt{t^{2}+16\sin^{2}(t)+16\cos^{2}(t)}
|
slope intercept of 2x+4y=-8
|
slope\:intercept\:2x+4y=-8
|
domain of f(x)=2sqrt(4-x^2)
|
domain\:f(x)=2\sqrt{4-x^{2}}
|
range of 2/(x-6)+4
|
range\:\frac{2}{x-6}+4
|
extreme points of x^5-5x
|
extreme\:points\:x^{5}-5x
|
asymptotes of f(x)=(x^2-x)/(x^2-1)
|
asymptotes\:f(x)=\frac{x^{2}-x}{x^{2}-1}
|
domain of sqrt(x^2+3x+6)
|
domain\:\sqrt{x^{2}+3x+6}
|
domain of x^2-10x+20
|
domain\:x^{2}-10x+20
|
inverse of (2x+1)/(x-3)
|
inverse\:\frac{2x+1}{x-3}
|
domain of f(x)=(x-13)/(x^3+9x)
|
domain\:f(x)=\frac{x-13}{x^{3}+9x}
|
inflection points of x^3-2x^2-4x+4
|
inflection\:points\:x^{3}-2x^{2}-4x+4
|
monotone intervals f(x)=(x+3)^{2/3}
|
monotone\:intervals\:f(x)=(x+3)^{\frac{2}{3}}
|
inflection points of f(x)=x^2e^{7x}
|
inflection\:points\:f(x)=x^{2}e^{7x}
|
range of (x+3)^2-1
|
range\:(x+3)^{2}-1
|
parity sqrt(4x^2e^{x^4)+1}
|
parity\:\sqrt{4x^{2}e^{x^{4}}+1}
|
critical points of f(x)=x^3-3x^2-9x+4
|
critical\:points\:f(x)=x^{3}-3x^{2}-9x+4
|
asymptotes of f(x)=-2+1/x
|
asymptotes\:f(x)=-2+\frac{1}{x}
|
critical points of-4/((x+1)^2)
|
critical\:points\:-\frac{4}{(x+1)^{2}}
|
slope of 4x=7y+5
|
slope\:4x=7y+5
|
domain of f(x)=(x+6)/(1-x)
|
domain\:f(x)=\frac{x+6}{1-x}
|
parallel 3x-2y=8,\at (4,-2)
|
parallel\:3x-2y=8,\at\:(4,-2)
|
inverse of f(x)=x^5+4
|
inverse\:f(x)=x^{5}+4
|
asymptotes of f(x)= x/(x^2-1)
|
asymptotes\:f(x)=\frac{x}{x^{2}-1}
|
range of (x-4)/(3x+5)
|
range\:\frac{x-4}{3x+5}
|
inflection points of-1/2 x^4+48x^2
|
inflection\:points\:-\frac{1}{2}x^{4}+48x^{2}
|
domain of f(x)=x^4+x^3
|
domain\:f(x)=x^{4}+x^{3}
|
domain of y=cos^{-1}(x)-sin^{-1}(x)
|
domain\:y=\cos^{-1}(x)-\sin^{-1}(x)
|
extreme points of f(x)=(x^2)/((x^2-16))
|
extreme\:points\:f(x)=\frac{x^{2}}{(x^{2}-16)}
|
domain of x-2
|
domain\:x-2
|
critical points of (x^2-9)^3
|
critical\:points\:(x^{2}-9)^{3}
|
intercepts of f(x)=y=-7(x-8)^2+6
|
intercepts\:f(x)=y=-7(x-8)^{2}+6
|
line (-8,-5)(5,8)
|
line\:(-8,-5)(5,8)
|
extreme points of \sqrt[3]{(x^2-4)^2}
|
extreme\:points\:\sqrt[3]{(x^{2}-4)^{2}}
|
inflection points of f(x)=2x^3-24x
|
inflection\:points\:f(x)=2x^{3}-24x
|
domain of-x-5
|
domain\:-x-5
|
perpendicular y= 1/4 x+9,\at (2-2)
|
perpendicular\:y=\frac{1}{4}x+9,\at\:(2-2)
|
domain of 3/x+9
|
domain\:\frac{3}{x}+9
|
domain of f(x)=(8x+15)/(x^2+5x)
|
domain\:f(x)=\frac{8x+15}{x^{2}+5x}
|
inverse of f(x)=((x+2))/((2x+1))
|
inverse\:f(x)=\frac{(x+2)}{(2x+1)}
|
symmetry y=x^2-5x+6
|
symmetry\:y=x^{2}-5x+6
|
domain of x-12
|
domain\:x-12
|
domain of f(x)=(7z+6)/(z-7)+(7z+3)/(z-7)
|
domain\:f(x)=\frac{7z+6}{z-7}+\frac{7z+3}{z-7}
|
inverse of f(x)=(x-2)^2+3
|
inverse\:f(x)=(x-2)^{2}+3
|
domain of f(x)=(-5x)/(-2x-3)
|
domain\:f(x)=\frac{-5x}{-2x-3}
|
domain of-2(x-1)^{1/3}
|
domain\:-2(x-1)^{\frac{1}{3}}
|
line (3,4)(5,8)
|
line\:(3,4)(5,8)
|
inverse of f(x)=(x-3)/(x+2)
|
inverse\:f(x)=\frac{x-3}{x+2}
|
asymptotes of f(x)=((-4x^2-2x+1))/(2x+3)
|
asymptotes\:f(x)=\frac{(-4x^{2}-2x+1)}{2x+3}
|
domain of f(x)=(x-1)/(x^2-1)
|
domain\:f(x)=\frac{x-1}{x^{2}-1}
|
inverse of f(x)=5^{x/3}
|
inverse\:f(x)=5^{\frac{x}{3}}
|
inverse of f(x)=ln(2x)-8
|
inverse\:f(x)=\ln(2x)-8
|
inverse of f(x)=sqrt(-2x+3)
|
inverse\:f(x)=\sqrt{-2x+3}
|
inverse of f(x)=9(x-8)
|
inverse\:f(x)=9(x-8)
|
inverse of f(x)=(2x-1)/4
|
inverse\:f(x)=\frac{2x-1}{4}
|
domain of y=sqrt(x+2)-2
|
domain\:y=\sqrt{x+2}-2
|
domain of sqrt(-9-x)
|
domain\:\sqrt{-9-x}
|
domain of f(x)= 1/(2x-8)
|
domain\:f(x)=\frac{1}{2x-8}
|
domain of f(x)=ln(x^2-36)
|
domain\:f(x)=\ln(x^{2}-36)
|
range of 2x^2-x+2
|
range\:2x^{2}-x+2
|
midpoint (5,7)(13,2)
|
midpoint\:(5,7)(13,2)
|
asymptotes of (9x^2+x-7)/(x^2+x-90)
|
asymptotes\:\frac{9x^{2}+x-7}{x^{2}+x-90}
|
intercepts of 7tan(0.4x)
|
intercepts\:7\tan(0.4x)
|
range of sqrt((x+1)/(x-2))
|
range\:\sqrt{\frac{x+1}{x-2}}
|
extreme points of f(x)=x^2+4x+1
|
extreme\:points\:f(x)=x^{2}+4x+1
|
intercepts of (1+3x^2-x^3)/(x^2)
|
intercepts\:\frac{1+3x^{2}-x^{3}}{x^{2}}
|
slope of y=4x-9
|
slope\:y=4x-9
|
inverse of f(x)=3x-5
|
inverse\:f(x)=3x-5
|
asymptotes of f(x)=(-4x^2-3x+8)/(x+1)
|
asymptotes\:f(x)=\frac{-4x^{2}-3x+8}{x+1}
|
parity f(x)=-6x^5+5x^3
|
parity\:f(x)=-6x^{5}+5x^{3}
|
perpendicular y= 3/7
|
perpendicular\:y=\frac{3}{7}
|
slope of 2x+y=3
|
slope\:2x+y=3
|
domain of 3x^4-15
|
domain\:3x^{4}-15
|
domain of f(x)=sqrt(x-16)
|
domain\:f(x)=\sqrt{x-16}
|
distance (0,0)(6,-8)
|
distance\:(0,0)(6,-8)
|
domain of f(x)=1-x
|
domain\:f(x)=1-x
|
range of x/(x-6)
|
range\:\frac{x}{x-6}
|
monotone intervals (x^2+1)/(x^2-1)
|
monotone\:intervals\:\frac{x^{2}+1}{x^{2}-1}
|
slope of y=-x-3
|
slope\:y=-x-3
|
domain of x-1,x< 0
|
domain\:x-1,x\lt\:0
|
asymptotes of ((x-1))/(x+2)
|
asymptotes\:\frac{(x-1)}{x+2}
|
range of (2x-1)/(x-7)
|
range\:\frac{2x-1}{x-7}
|
domain of f(x)= 1/(sqrt(x^2-7x))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-7x}}
|
inverse of y=x^2+5x
|
inverse\:y=x^{2}+5x
|
inverse of f(x)=2^x+1
|
inverse\:f(x)=2^{x}+1
|
domain of f(x)=\sqrt[4]{x+9}
|
domain\:f(x)=\sqrt[4]{x+9}
|
extreme points of f(x)=x^3-9x^2-120x+6
|
extreme\:points\:f(x)=x^{3}-9x^{2}-120x+6
|
domain of f(x)=|9-x|
|
domain\:f(x)=|9-x|
|
range of 4sqrt(x-2)-8
|
range\:4\sqrt{x-2}-8
|
critical points of f(x)=3x^4-4x^3
|
critical\:points\:f(x)=3x^{4}-4x^{3}
|