range of x^4+8x^3
|
range\:x^{4}+8x^{3}
|
parallel y= 1/2 x-3/2
|
parallel\:y=\frac{1}{2}x-\frac{3}{2}
|
domain of f(x)=sqrt(2-x)+sqrt(x)
|
domain\:f(x)=\sqrt{2-x}+\sqrt{x}
|
slope of x-y=3
|
slope\:x-y=3
|
slope intercept of y-(-8)=-2(x-0)
|
slope\:intercept\:y-(-8)=-2(x-0)
|
intercepts of f(x)=(2x^2)/(x^2+3x-10)
|
intercepts\:f(x)=\frac{2x^{2}}{x^{2}+3x-10}
|
line (4,4)(-2,3)
|
line\:(4,4)(-2,3)
|
inverse of f(x)= 1/2 x^3-6
|
inverse\:f(x)=\frac{1}{2}x^{3}-6
|
intercepts of f(x)=x^2-4x+8
|
intercepts\:f(x)=x^{2}-4x+8
|
domain of ((x+1)^2)/(sqrt(2x-1))
|
domain\:\frac{(x+1)^{2}}{\sqrt{2x-1}}
|
domain of y=(-9)/(x+1)
|
domain\:y=\frac{-9}{x+1}
|
intercepts of f(x)=2x^3-3x^2-36x+5
|
intercepts\:f(x)=2x^{3}-3x^{2}-36x+5
|
intercepts of f(x)=y=-3/4 x-3/4
|
intercepts\:f(x)=y=-\frac{3}{4}x-\frac{3}{4}
|
midpoint (-5,-5)(-1,9)
|
midpoint\:(-5,-5)(-1,9)
|
domain of cot(arcsin(x))
|
domain\:\cot(\arcsin(x))
|
asymptotes of f(x)=3(1/2)^x
|
asymptotes\:f(x)=3(\frac{1}{2})^{x}
|
shift tan(x/2)
|
shift\:\tan(\frac{x}{2})
|
symmetry 5/(-x)
|
symmetry\:\frac{5}{-x}
|
domain of (7+1/x)/(1/x)
|
domain\:\frac{7+\frac{1}{x}}{\frac{1}{x}}
|
domain of (sqrt(x^2-25))/(3x-24)
|
domain\:\frac{\sqrt{x^{2}-25}}{3x-24}
|
domain of f(x)=sqrt(5x+8)
|
domain\:f(x)=\sqrt{5x+8}
|
domain of y=x^2-1
|
domain\:y=x^{2}-1
|
symmetry (2x^2-17x-38)/(2x+3)
|
symmetry\:\frac{2x^{2}-17x-38}{2x+3}
|
f(x)=x^2+4
|
f(x)=x^{2}+4
|
extreme points of x^4-2x^3
|
extreme\:points\:x^{4}-2x^{3}
|
domain of (x+1)/(x-1)+1/x
|
domain\:\frac{x+1}{x-1}+\frac{1}{x}
|
inverse of f(x)= x/(1+2x)
|
inverse\:f(x)=\frac{x}{1+2x}
|
asymptotes of f(x)=((x^3+3x))/(x-3)
|
asymptotes\:f(x)=\frac{(x^{3}+3x)}{x-3}
|
inverse of f(x)=-(1+8x)/(5-x)
|
inverse\:f(x)=-\frac{1+8x}{5-x}
|
intercepts of f(x)=4x+5
|
intercepts\:f(x)=4x+5
|
inverse of f(x)=e^x-e^{-x}
|
inverse\:f(x)=e^{x}-e^{-x}
|
midpoint (1,3)(-5,7)
|
midpoint\:(1,3)(-5,7)
|
asymptotes of f(x)=(7e^x)/(e^x-9)
|
asymptotes\:f(x)=\frac{7e^{x}}{e^{x}-9}
|
inverse of f(x)=(x-3)^3+2
|
inverse\:f(x)=(x-3)^{3}+2
|
domain of f(x)= 5/(x+6)
|
domain\:f(x)=\frac{5}{x+6}
|
inverse of (19-x)^{1/8}
|
inverse\:(19-x)^{\frac{1}{8}}
|
parity f(x)=x+1
|
parity\:f(x)=x+1
|
inverse of f(x)=x^8
|
inverse\:f(x)=x^{8}
|
line (1,220),(2,245)
|
line\:(1,220),(2,245)
|
inverse of 2log_{0.5}(-5x)+4
|
inverse\:2\log_{0.5}(-5x)+4
|
domain of f(x)= 1/(sqrt(x^2-6x))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-6x}}
|
asymptotes of f(x)=((x^2-x-6))/(x^2-4)
|
asymptotes\:f(x)=\frac{(x^{2}-x-6)}{x^{2}-4}
|
extreme points of f(x)=-2x^2+6x-5
|
extreme\:points\:f(x)=-2x^{2}+6x-5
|
inflection points of 5/(x^2-49)
|
inflection\:points\:\frac{5}{x^{2}-49}
|
asymptotes of f(x)=((x^2-16))/(x+4)
|
asymptotes\:f(x)=\frac{(x^{2}-16)}{x+4}
|
inflection f(x)=e^{-x^2}
|
inflection\:f(x)=e^{-x^{2}}
|
domain of 4/x
|
domain\:\frac{4}{x}
|
range of f(x)=19-t^2
|
range\:f(x)=19-t^{2}
|
inverse of f(x)=9x^2+8x+6
|
inverse\:f(x)=9x^{2}+8x+6
|
inverse of 1.25t+82
|
inverse\:1.25t+82
|
slope intercept of (4,-9)-5
|
slope\:intercept\:(4,-9)-5
|
inverse of f(x)=1+sqrt(4+5x)
|
inverse\:f(x)=1+\sqrt{4+5x}
|
asymptotes of f(x)=(x^3)/(x^2-1)
|
asymptotes\:f(x)=\frac{x^{3}}{x^{2}-1}
|
slope intercept of y+4=1(x+3)
|
slope\:intercept\:y+4=1(x+3)
|
f(x)=sqrt(x-5)
|
f(x)=\sqrt{x-5}
|
domain of f(x)=((1-5x)/(3+x))
|
domain\:f(x)=(\frac{1-5x}{3+x})
|
asymptotes of (-5x+20)/(x^2-16)
|
asymptotes\:\frac{-5x+20}{x^{2}-16}
|
slope of y+2x=5
|
slope\:y+2x=5
|
inverse of f(x)=2x^3+12
|
inverse\:f(x)=2x^{3}+12
|
periodicity of f(x)=3cos(2x)
|
periodicity\:f(x)=3\cos(2x)
|
domain of f(x)=3x^3+6x^2
|
domain\:f(x)=3x^{3}+6x^{2}
|
inverse of f(x)=35x^2+165x
|
inverse\:f(x)=35x^{2}+165x
|
asymptotes of f(x)=cot(x)
|
asymptotes\:f(x)=\cot(x)
|
inverse of 1/z
|
inverse\:\frac{1}{z}
|
inverse of f(x)= 1/27 (5y^4+6y^2)
|
inverse\:f(x)=\frac{1}{27}(5y^{4}+6y^{2})
|
inverse of f(x)=1/2*x^4
|
inverse\:f(x)=1/2\cdot\:x^{4}
|
asymptotes of f(x)=(x^2+2x)/(-4x+8)
|
asymptotes\:f(x)=\frac{x^{2}+2x}{-4x+8}
|
range of f(x)=-(1-e^x)/(e^x+1)
|
range\:f(x)=-\frac{1-e^{x}}{e^{x}+1}
|
y=2x-2
|
y=2x-2
|
parallel y= 3/(5x)-3(5,-1)
|
parallel\:y=\frac{3}{5x}-3(5,-1)
|
domain of (2x+1)/(5x+3)
|
domain\:\frac{2x+1}{5x+3}
|
range of f(x)=(a^2+5)/3
|
range\:f(x)=\frac{a^{2}+5}{3}
|
inverse of f(x)=y= 1/100 (x-4)+4
|
inverse\:f(x)=y=\frac{1}{100}(x-4)+4
|
intercepts of f(x)=(x+4)^2-7
|
intercepts\:f(x)=(x+4)^{2}-7
|
midpoint (2,3)(4,7)
|
midpoint\:(2,3)(4,7)
|
slope intercept of 3x+5y=15
|
slope\:intercept\:3x+5y=15
|
intercepts of f(x)=-2x^2-16x-30
|
intercepts\:f(x)=-2x^{2}-16x-30
|
inverse of f(x)=(x-8)/(x+8)
|
inverse\:f(x)=\frac{x-8}{x+8}
|
range of 8/(x^2-100)
|
range\:\frac{8}{x^{2}-100}
|
perpendicular y=-1/3 x+9
|
perpendicular\:y=-\frac{1}{3}x+9
|
domain of g(t)= 9/(sqrt(t))
|
domain\:g(t)=\frac{9}{\sqrt{t}}
|
inverse of f(x)=sqrt(3x+2)
|
inverse\:f(x)=\sqrt{3x+2}
|
inverse of y= 4/(x+3)
|
inverse\:y=\frac{4}{x+3}
|
perpendicular (3x)/7-(5y)/9 =(2x)/3-4
|
perpendicular\:\frac{3x}{7}-\frac{5y}{9}=\frac{2x}{3}-4
|
inverse of f(x)= 6/(x+3)
|
inverse\:f(x)=\frac{6}{x+3}
|
asymptotes of r(x)=(6x^2+1)/(2x^2+x-1)
|
asymptotes\:r(x)=\frac{6x^{2}+1}{2x^{2}+x-1}
|
shift f(x)=5sin(4x+2pi)
|
shift\:f(x)=5\sin(4x+2\pi)
|
monotone intervals f(x)=x^4-8x^2
|
monotone\:intervals\:f(x)=x^{4}-8x^{2}
|
slope intercept of 6x+2y=10
|
slope\:intercept\:6x+2y=10
|
inflection points of f(x)=sqrt(x+3)
|
inflection\:points\:f(x)=\sqrt{x+3}
|
asymptotes of f(x)=(x-2)/(x+5)
|
asymptotes\:f(x)=(x-2)/(x+5)
|
range of sqrt(x(x-2))
|
range\:\sqrt{x(x-2)}
|
slope intercept of x+y=1
|
slope\:intercept\:x+y=1
|
inverse of f(x)= 1/2 (x+6)
|
inverse\:f(x)=\frac{1}{2}(x+6)
|
slope of x+9=y
|
slope\:x+9=y
|
critical points of 9x^2-x^3+2
|
critical\:points\:9x^{2}-x^{3}+2
|
midpoint (5,9)(9,6)
|
midpoint\:(5,9)(9,6)
|
slope intercept of-y=3x+3
|
slope\:intercept\:-y=3x+3
|
inflection points of f(x)=12x^2-x^3
|
inflection\:points\:f(x)=12x^{2}-x^{3}
|
inverse of f(x)= 9/(x+8)
|
inverse\:f(x)=\frac{9}{x+8}
|