y=e^{sin(2x)}
|
y=e^{\sin(2x)}
|
y=\sqrt[3]{x}+2
|
y=\sqrt[3]{x}+2
|
f(x)= x/(1+|x|)
|
f(x)=\frac{x}{1+\left|x\right|}
|
f(x)=2x^2+7x+4
|
f(x)=2x^{2}+7x+4
|
y=(10)/x
|
y=\frac{10}{x}
|
f(x)=(5x^2+3x-2)/(x^3-8)
|
f(x)=\frac{5x^{2}+3x-2}{x^{3}-8}
|
g(x)=-5x+3
|
g(x)=-5x+3
|
f(x)=x^2-8x-15
|
f(x)=x^{2}-8x-15
|
f(x)=x^3-6x^2+11x-6
|
f(x)=x^{3}-6x^{2}+11x-6
|
f(x)=e^{(sin(pi))/x}
|
f(x)=e^{\frac{\sin(π)}{x}}
|
line (-1,5),(-5,5)
|
line\:(-1,5),(-5,5)
|
f(x)=4^{x+2}
|
f(x)=4^{x+2}
|
f(x)=x^3-12x+5
|
f(x)=x^{3}-12x+5
|
f(x)=3x^2+2x+2
|
f(x)=3x^{2}+2x+2
|
f(x)=cos^3(2x)
|
f(x)=\cos^{3}(2x)
|
f(x)=(3x)/(x^2-1)
|
f(x)=\frac{3x}{x^{2}-1}
|
f(x)=(2x^2-3)/(x^2+1)
|
f(x)=\frac{2x^{2}-3}{x^{2}+1}
|
h(x)=-5x^2+20x+60
|
h(x)=-5x^{2}+20x+60
|
f(x)=(2x)/(x-5)
|
f(x)=\frac{2x}{x-5}
|
f(x)=x^5+x^3+2x-2
|
f(x)=x^{5}+x^{3}+2x-2
|
range of f(x)= 5/(2x^2+1)
|
range\:f(x)=\frac{5}{2x^{2}+1}
|
f(x)=\sqrt[5]{1+x}
|
f(x)=\sqrt[5]{1+x}
|
f(x)=4x^2-6x+9
|
f(x)=4x^{2}-6x+9
|
f(x)=xe^2
|
f(x)=xe^{2}
|
f(x)=|x-7|
|
f(x)=\left|x-7\right|
|
f(x)=sqrt(16+x^2)
|
f(x)=\sqrt{16+x^{2}}
|
f(x)= 7/(x+2)
|
f(x)=\frac{7}{x+2}
|
f(x)=(sin(x))^3
|
f(x)=(\sin(x))^{3}
|
f(x)= x/(2x-4)
|
f(x)=\frac{x}{2x-4}
|
f(x)=3(4)^x
|
f(x)=3(4)^{x}
|
midpoint (5,-4)(-1,-4)
|
midpoint\:(5,-4)(-1,-4)
|
y=(e^x+e^{-x})/2
|
y=\frac{e^{x}+e^{-x}}{2}
|
f(x)=(x-1)^2-3
|
f(x)=(x-1)^{2}-3
|
f(x)=5^{x+3}
|
f(x)=5^{x+3}
|
f(x)=(3x+11)/(4x-15)
|
f(x)=\frac{3x+11}{4x-15}
|
y=|sin(x)|
|
y=\left|\sin(x)\right|
|
y=csc(2x)
|
y=\csc(2x)
|
y=2*3^x
|
y=2\cdot\:3^{x}
|
y= 1/3 (x^2+2)^{3/2}
|
y=\frac{1}{3}(x^{2}+2)^{\frac{3}{2}}
|
f(x)=4x^2+4x-8
|
f(x)=4x^{2}+4x-8
|
r(θ)=-2cos(θ)
|
r(θ)=-2\cos(θ)
|
inflection points of (x^3)/(x+2)
|
inflection\:points\:\frac{x^{3}}{x+2}
|
f(x)=5x^2-2x+1
|
f(x)=5x^{2}-2x+1
|
f(x)=3-x^3
|
f(x)=3-x^{3}
|
f(n)= 1/(2^n)
|
f(n)=\frac{1}{2^{n}}
|
y=e^{3x}cos(2x)
|
y=e^{3x}\cos(2x)
|
f(y)=y^2-y+1
|
f(y)=y^{2}-y+1
|
y=log_{10}(x-4)
|
y=\log_{10}(x-4)
|
f(x)=x^3-2x^2+2
|
f(x)=x^{3}-2x^{2}+2
|
f(x)=4x^2+8x+7
|
f(x)=4x^{2}+8x+7
|
y=3cot(x)
|
y=3\cot(x)
|
f(x)=log_{5}(4-x)
|
f(x)=\log_{5}(4-x)
|
f(x)=xsqrt(6-x)
|
f(x)=x\sqrt{6-x}
|
f(x)=\sqrt[3]{(x^2-4)^2}
|
f(x)=\sqrt[3]{(x^{2}-4)^{2}}
|
f(m)=m^{10}-1
|
f(m)=m^{10}-1
|
f(x)=(x+2)/5
|
f(x)=\frac{x+2}{5}
|
f(r)=r^2+1
|
f(r)=r^{2}+1
|
f(x)=(arcsin(x))/(arccos(x))
|
f(x)=\frac{\arcsin(x)}{\arccos(x)}
|
y=2^{3x}
|
y=2^{3x}
|
y=10x^2
|
y=10x^{2}
|
f(θ)=csc(θ)-cot(θ)
|
f(θ)=\csc(θ)-\cot(θ)
|
y=-2cos(4x)
|
y=-2\cos(4x)
|
range of f(z)=sqrt(4-z^2)
|
range\:f(z)=\sqrt{4-z^{2}}
|
f(x)=7x^4-5x^3-10x^2+2x
|
f(x)=7x^{4}-5x^{3}-10x^{2}+2x
|
f(x)=e^{-x}-e^{-x}x
|
f(x)=e^{-x}-e^{-x}x
|
f(t)=t-2
|
f(t)=t-2
|
f(x)=(-2x^2-3x+1)/(x^2-4)
|
f(x)=\frac{-2x^{2}-3x+1}{x^{2}-4}
|
y=3^x-4
|
y=3^{x}-4
|
f(x)=5ln(4x)
|
f(x)=5\ln(4x)
|
f(x)=16x^2+49
|
f(x)=16x^{2}+49
|
f(x)=sqrt((x^2-1)/(x^3+x))
|
f(x)=\sqrt{\frac{x^{2}-1}{x^{3}+x}}
|
y= 1/2 tan(x)
|
y=\frac{1}{2}\tan(x)
|
f(x)=(x^3)/(x+1)
|
f(x)=\frac{x^{3}}{x+1}
|
domain of f(x)=sqrt(x^2+x)
|
domain\:f(x)=\sqrt{x^{2}+x}
|
f(x)=2-sin(x)
|
f(x)=2-\sin(x)
|
f(x)=log_{10}(x^2-1)
|
f(x)=\log_{10}(x^{2}-1)
|
f(x)=11x^2
|
f(x)=11x^{2}
|
f(x)=sqrt(2x+7)
|
f(x)=\sqrt{2x+7}
|
f(x)=(x+2)^{2/3}
|
f(x)=(x+2)^{\frac{2}{3}}
|
f(x)=2x^2-12x+17
|
f(x)=2x^{2}-12x+17
|
f(x)=sqrt(x+1)+sqrt(1-x)
|
f(x)=\sqrt{x+1}+\sqrt{1-x}
|
y=2x^3+3x^2-12x
|
y=2x^{3}+3x^{2}-12x
|
f(x)=ln(x-2)+1
|
f(x)=\ln(x-2)+1
|
f(x)=4x^2+x+1
|
f(x)=4x^{2}+x+1
|
asymptotes of f(x)= 3/2 tan(3x)
|
asymptotes\:f(x)=\frac{3}{2}\tan(3x)
|
domain of f(x)=(x-1)/(x^2-4x+3)
|
domain\:f(x)=\frac{x-1}{x^{2}-4x+3}
|
f(x)=5x^4-6x^3+x^2-2
|
f(x)=5x^{4}-6x^{3}+x^{2}-2
|
f(t)=(cos(2t))^2
|
f(t)=(\cos(2t))^{2}
|
x^6
|
x^{6}
|
f(x)=sin(2x)cos(3x)
|
f(x)=\sin(2x)\cos(3x)
|
f(x)=x^2+x-7
|
f(x)=x^{2}+x-7
|
r(θ)=3+2cos(θ)
|
r(θ)=3+2\cos(θ)
|
y=-8x^2+3x-7
|
y=-8x^{2}+3x-7
|
f(x)=1+3x
|
f(x)=1+3x
|
f(x)=x^2-4x-9
|
f(x)=x^{2}-4x-9
|
f(o)=e^o
|
f(o)=e^{o}
|
f(s)=s^2-4s+8
|
f(s)=s^{2}-4s+8
|
f(x)=2xln(x)+x
|
f(x)=2x\ln(x)+x
|
y= 4/(x^2)
|
y=\frac{4}{x^{2}}
|
y=-x^2-5
|
y=-x^{2}-5
|