y=3^x-1
|
y=3^{x}-1
|
y=x^{x^2}
|
y=x^{x^{2}}
|
f(n)=n+1
|
f(n)=n+1
|
y=2x^2-10x+8
|
y=2x^{2}-10x+8
|
f(x)= 4/(x-1)
|
f(x)=\frac{4}{x-1}
|
y=-4/3 x+1
|
y=-\frac{4}{3}x+1
|
f(θ)=sin(4θ)
|
f(θ)=\sin(4θ)
|
f(x)=-x+8
|
f(x)=-x+8
|
y=-4x+13
|
y=-4x+13
|
f(θ)=sin^2(θ)cot^2(θ)tan^2(θ)csc^2(θ)
|
f(θ)=\sin^{2}(θ)\cot^{2}(θ)\tan^{2}(θ)\csc^{2}(θ)
|
f(x)=x^{5/7}
|
f(x)=x^{\frac{5}{7}}
|
f(x)=-2ln(x)
|
f(x)=-2\ln(x)
|
f(x)=-x^5
|
f(x)=-x^{5}
|
f(y)=y-3
|
f(y)=y-3
|
f(n)=2n+1
|
f(n)=2n+1
|
f(x)=\sqrt[3]{1+x}
|
f(x)=\sqrt[3]{1+x}
|
f(x)=9x+2
|
f(x)=9x+2
|
f(x)= 3/(x^3)
|
f(x)=\frac{3}{x^{3}}
|
f(x)=x^3-6x^2+15
|
f(x)=x^{3}-6x^{2}+15
|
distance (-4,5)\land (4,10)
|
distance\:(-4,5)\land\:(4,10)
|
y=5x+9
|
y=5x+9
|
f(x)=2x^2-2x-3
|
f(x)=2x^{2}-2x-3
|
f(y)=y^2+1
|
f(y)=y^{2}+1
|
y=7x+1
|
y=7x+1
|
f(x)=(1+sin(x))/(1-sin(x))
|
f(x)=\frac{1+\sin(x)}{1-\sin(x)}
|
f(t)=4t^2-5sin(3t)
|
f(t)=4t^{2}-5\sin(3t)
|
f(x)=2x^2-8x+1
|
f(x)=2x^{2}-8x+1
|
f(x)=log_{b}(x)
|
f(x)=\log_{b}(x)
|
y=x^2+6x+6
|
y=x^{2}+6x+6
|
f(x)=9sin(x-5)+8
|
f(x)=9\sin(x-5)+8
|
extreme points of x^3-8x^2-12x+8
|
extreme\:points\:x^{3}-8x^{2}-12x+8
|
y=8x+3
|
y=8x+3
|
y=ln(x-2)
|
y=\ln(x-2)
|
y=3x^2+5
|
y=3x^{2}+5
|
f(x)=|x|+3
|
f(x)=\left|x\right|+3
|
f(x)=2x^2+3x+4
|
f(x)=2x^{2}+3x+4
|
y=(x-3)^2-4
|
y=(x-3)^{2}-4
|
f(t)=5t
|
f(t)=5t
|
y= 3/2 x+4
|
y=\frac{3}{2}x+4
|
r(θ)=1+2cos(θ)
|
r(θ)=1+2\cos(θ)
|
y=-1/2 x-5
|
y=-\frac{1}{2}x-5
|
distance (x,-2)(-1,4)
|
distance\:(x,-2)(-1,4)
|
y=-cos(x)
|
y=-\cos(x)
|
f(x)=cos^6(x)
|
f(x)=\cos^{6}(x)
|
f(x)=x^3-5x^2-4x+20
|
f(x)=x^{3}-5x^{2}-4x+20
|
f(x)=-x^2+6x
|
f(x)=-x^{2}+6x
|
f(x)=e
|
f(x)=e
|
f(y)=6y
|
f(y)=6y
|
f(x)= 6/(x^2)
|
f(x)=\frac{6}{x^{2}}
|
f(x)=arcsin(3x)
|
f(x)=\arcsin(3x)
|
f(x)=x^2-10x+25
|
f(x)=x^{2}-10x+25
|
f(x)=(5/2)^x
|
f(x)=(\frac{5}{2})^{x}
|
domain of f(x)=-6x^4
|
domain\:f(x)=-6x^{4}
|
f(x)=1+sec^2(x)
|
f(x)=1+\sec^{2}(x)
|
f(x)= 1/(x^2+x)
|
f(x)=\frac{1}{x^{2}+x}
|
f(x)=|x-3|-2
|
f(x)=\left|x-3\right|-2
|
f(x)=(1-x^2)^{1/2}
|
f(x)=(1-x^{2})^{\frac{1}{2}}
|
f(x)=|x^3|
|
f(x)=\left|x^{3}\right|
|
f(x)=10-3x
|
f(x)=10-3x
|
f(x)=-1/2 x-4^2
|
f(x)=-\frac{1}{2}x-4^{2}
|
y=(cos(x))/(1+sin(x))
|
y=\frac{\cos(x)}{1+\sin(x)}
|
f(x)=(x^2-3x-4)/(x-2)
|
f(x)=\frac{x^{2}-3x-4}{x-2}
|
f(n)=n^2+n
|
f(n)=n^{2}+n
|
asymptotes of (x^2-3)/(x+sqrt(3))
|
asymptotes\:\frac{x^{2}-3}{x+\sqrt{3}}
|
f(x)=(x^2)/(x-3)
|
f(x)=\frac{x^{2}}{x-3}
|
f(x)=(2x-3)^9
|
f(x)=(2x-3)^{9}
|
f(x)=x-ln(x)
|
f(x)=x-\ln(x)
|
f(x)=x^{12}
|
f(x)=x^{12}
|
y=arcsin(sqrt(1-x^2))
|
y=\arcsin(\sqrt{1-x^{2}})
|
y=ln(sqrt((x+1)/(x-1)))
|
y=\ln(\sqrt{\frac{x+1}{x-1}})
|
f(x)=cos(x^{99999})-sqrt(1089-x^2)
|
f(x)=\cos(x^{99999})-\sqrt{1089-x^{2}}
|
f(x)=log_{7}(3-5x)+6
|
f(x)=\log_{7}(3-5x)+6
|
f(x)=(x^3)/((x-1)^2)
|
f(x)=\frac{x^{3}}{(x-1)^{2}}
|
y=2x^2+4x-1
|
y=2x^{2}+4x-1
|
distance (3,4)(-2,1)
|
distance\:(3,4)(-2,1)
|
f(x)=x^3-x^2-2x
|
f(x)=x^{3}-x^{2}-2x
|
f(x)=1-cot^2(x)
|
f(x)=1-\cot^{2}(x)
|
f(x)= 1/((x+1))
|
f(x)=\frac{1}{(x+1)}
|
f(x)=4x^2-3
|
f(x)=4x^{2}-3
|
y=3x^2-6x+4
|
y=3x^{2}-6x+4
|
f(x)=-2x-5
|
f(x)=-2x-5
|
f(x)=(1-sin(x))/(1+sin(x))
|
f(x)=\frac{1-\sin(x)}{1+\sin(x)}
|
y=x^2-2x-2
|
y=x^{2}-2x-2
|
y=sin(x+pi/2)
|
y=\sin(x+\frac{π}{2})
|
f(x)=2+x^2
|
f(x)=2+x^{2}
|
amplitude of sin(5x)
|
amplitude\:\sin(5x)
|
inverse of f(x)=(x+5)^3-2
|
inverse\:f(x)=(x+5)^{3}-2
|
a(t)=t^2-4t+8
|
a(t)=t^{2}-4t+8
|
f(x)=\sqrt[3]{x-5}
|
f(x)=\sqrt[3]{x-5}
|
y=(x^3)/((x-1)^2)
|
y=\frac{x^{3}}{(x-1)^{2}}
|
f(x)=sin(2x)sin(x)
|
f(x)=\sin(2x)\sin(x)
|
y= 1/(2x+2)
|
y=\frac{1}{2x+2}
|
y=x^2+2x-2
|
y=x^{2}+2x-2
|
y=-x^2+4x-4
|
y=-x^{2}+4x-4
|
y=-x^2+4x+2
|
y=-x^{2}+4x+2
|
y=x^2+3x-5
|
y=x^{2}+3x-5
|
y=-x^2+2x-1
|
y=-x^{2}+2x-1
|
inverse of f(x)=2x-13
|
inverse\:f(x)=2x-13
|
f(x)=sqrt(3-2x)
|
f(x)=\sqrt{3-2x}
|
y=9x+3
|
y=9x+3
|