Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
intercepts of f(x)=-x^2-4x+12
intercepts\:f(x)=-x^{2}-4x+12
inflection x+1+1/(x^2-1)
inflection\:x+1+\frac{1}{x^{2}-1}
domain of f(x)=(x^2-6x)^2-6(x^2-6x)
domain\:f(x)=(x^{2}-6x)^{2}-6(x^{2}-6x)
midpoint (0,0),(d,p)
midpoint\:(0,0),(d,p)
intercepts of (2x)/(x^2-3x-4)
intercepts\:\frac{2x}{x^{2}-3x-4}
parity f(x)=x^3-6
parity\:f(x)=x^{3}-6
intercepts of f(x)=-x^2-4x+3
intercepts\:f(x)=-x^{2}-4x+3
slope ofintercept y-4=-3x-10
slopeintercept\:y-4=-3x-10
simplify (2.3)(2.2)
simplify\:(2.3)(2.2)
inflection x/(x^2-6x+8)
inflection\:\frac{x}{x^{2}-6x+8}
extreme f(x)=2^x
extreme\:f(x)=2^{x}
domain of y=sqrt(16-x^2)
domain\:y=\sqrt{16-x^{2}}
monotone 1/4 x^4-1/3 x^3-x^2
monotone\:\frac{1}{4}x^{4}-\frac{1}{3}x^{3}-x^{2}
intercepts of \sqrt[3]{x}+3
intercepts\:\sqrt[3]{x}+3
asymptotes of f(x)= 1/(sqrt(x-2))
asymptotes\:f(x)=\frac{1}{\sqrt{x-2}}
inverse of f(x)=((3x-5))/((x+1))
inverse\:f(x)=\frac{(3x-5)}{(x+1)}
range of f(x)=\sqrt[3]{x}
range\:f(x)=\sqrt[3]{x}
asymptotes of f(x)=((x+5))/((x^2+3x-10))
asymptotes\:f(x)=\frac{(x+5)}{(x^{2}+3x-10)}
domain of f(x)=(2x-3)/(sqrt(x^2-5x+6))
domain\:f(x)=\frac{2x-3}{\sqrt{x^{2}-5x+6}}
domain of f(x)= 1/(sqrt(x+11))
domain\:f(x)=\frac{1}{\sqrt{x+11}}
domain of sqrt(x-4)
domain\:\sqrt{x-4}
asymptotes of f(x)=y
asymptotes\:f(x)=y
inverse of x^2+11x
inverse\:x^{2}+11x
amplitude of tan(2x-5)
amplitude\:\tan(2x-5)
domain of f(x)=(5x)/(5x+15)-3
domain\:f(x)=\frac{5x}{5x+15}-3
inflection (x^2-6x+5)/(x-3)
inflection\:\frac{x^{2}-6x+5}{x-3}
range of y=(2x^2)/(x^2-9)
range\:y=\frac{2x^{2}}{x^{2}-9}
domain of ln(1/(x+7))
domain\:\ln(\frac{1}{x+7})
f(x)=sin^4(x)
f(x)=\sin^{4}(x)
inverse of 2-sqrt(x+1)
inverse\:2-\sqrt{x+1}
slope ofintercept 4x-5y=15
slopeintercept\:4x-5y=15
perpendicular y=-2x+6,(2,2)
perpendicular\:y=-2x+6,(2,2)
inverse of f(x)=-8x+1
inverse\:f(x)=-8x+1
domain of f(x)=sqrt(t+2)
domain\:f(x)=\sqrt{t+2}
asymptotes of f(x)=(x^3-1)/(-4x^2+4x+24)
asymptotes\:f(x)=\frac{x^{3}-1}{-4x^{2}+4x+24}
midpoint (-2,-4),(2,-10)
midpoint\:(-2,-4),(2,-10)
parity f(x)=sin(x)cos(x)
parity\:f(x)=\sin(x)\cos(x)
domain of (2-x^2)/(x^2-9)
domain\:\frac{2-x^{2}}{x^{2}-9}
domain of f(x)=(2x-1)/(4+5x)
domain\:f(x)=\frac{2x-1}{4+5x}
intercepts of f(x)=(x-5)^2(x+3)
intercepts\:f(x)=(x-5)^{2}(x+3)
perpendicular 7x+2y=14
perpendicular\:7x+2y=14
inverse of sqrt(x-2)
inverse\:\sqrt{x-2}
intercepts of f(x)=x^2+x+2/(x-1)
intercepts\:f(x)=x^{2}+x+\frac{2}{x-1}
asymptotes of f(x)=(x^2)/((x+1)^{1/2)}
asymptotes\:f(x)=\frac{x^{2}}{(x+1)^{\frac{1}{2}}}
slope of 5x+2y=4
slope\:5x+2y=4
intercepts of y=-2x+6
intercepts\:y=-2x+6
line 5x-2y=4
line\:5x-2y=4
extreme f(x)=8(x-6)^{2/3}+2
extreme\:f(x)=8(x-6)^{\frac{2}{3}}+2
domain of ln(x^2-18x)
domain\:\ln(x^{2}-18x)
extreme f(x)=x+2/x
extreme\:f(x)=x+\frac{2}{x}
critical ((x^2-9))/(x^3+3x^2)
critical\:\frac{(x^{2}-9)}{x^{3}+3x^{2}}
inverse of f(x)=(-x-2)/(x+4)
inverse\:f(x)=\frac{-x-2}{x+4}
extreme f(x)=0.002x^3+5x+6.244
extreme\:f(x)=0.002x^{3}+5x+6.244
domain of f(x)=-5x-4
domain\:f(x)=-5x-4
asymptotes of f(x)=(x^2+9x-9)/(x-9)
asymptotes\:f(x)=\frac{x^{2}+9x-9}{x-9}
asymptotes of sqrt(1-x^2)
asymptotes\:\sqrt{1-x^{2}}
domain of 5-2x
domain\:5-2x
slope of 3/5
slope\:\frac{3}{5}
line (5x)/2-6/1
line\:\frac{5x}{2}-\frac{6}{1}
intercepts of f(x)=-4x^2+10x-6
intercepts\:f(x)=-4x^{2}+10x-6
inverse of 1/(X^2)
inverse\:\frac{1}{X^{2}}
domain of y=sqrt(x^2-16)
domain\:y=\sqrt{x^{2}-16}
domain of f(x)=(sqrt(2x+5))/(x-7)
domain\:f(x)=\frac{\sqrt{2x+5}}{x-7}
line (-3,4),(2,-6)
line\:(-3,4),(2,-6)
domain of f(x)= x/(sqrt(9-x^2))
domain\:f(x)=\frac{x}{\sqrt{9-x^{2}}}
line (-5,-8),(-8,7)
line\:(-5,-8),(-8,7)
intercepts of 1/4 x^2+2/3 x-1/6
intercepts\:\frac{1}{4}x^{2}+\frac{2}{3}x-\frac{1}{6}
extreme f(x)=2x+7
extreme\:f(x)=2x+7
asymptotes of 4/x-x
asymptotes\:\frac{4}{x}-x
asymptotes of f(x)=((x^2-4x))/(x^2-16)
asymptotes\:f(x)=\frac{(x^{2}-4x)}{x^{2}-16}
inverse of x^4+2
inverse\:x^{4}+2
range of (2x^2-10)/(x+2)
range\:\frac{2x^{2}-10}{x+2}
shift 15+5sin(-pi/(12)x+(7pi)/4)
shift\:15+5\sin(-\frac{π}{12}x+\frac{7π}{4})
inverse of 2-4x^3
inverse\:2-4x^{3}
parallel x-y=1,(-5,5)
parallel\:x-y=1,(-5,5)
inverse of 3/(2x^3)
inverse\:\frac{3}{2x^{3}}
slope of-6y=8x-4
slope\:-6y=8x-4
domain of sqrt(-x+2)
domain\:\sqrt{-x+2}
domain of 7/x-9/(x+9)
domain\:\frac{7}{x}-\frac{9}{x+9}
parallel y=-2x+3,(2,2)
parallel\:y=-2x+3,(2,2)
slope ofintercept 3x+4y=8
slopeintercept\:3x+4y=8
range of-x^2+4x+2
range\:-x^{2}+4x+2
perpendicular y=-4/3 x-3,(-4,1)
perpendicular\:y=-\frac{4}{3}x-3,(-4,1)
\begin{pmatrix}&1\end{pmatrix}\begin{pmatrix}1&\end{pmatrix}
domain of f(x)= x/(1+2x)
domain\:f(x)=\frac{x}{1+2x}
inverse of 9+sqrt(1+x)
inverse\:9+\sqrt{1+x}
parity tan(e^{3t})+e^{tan(3t)}
parity\:\tan(e^{3t})+e^{\tan(3t)}
domain of 1/(-5x+8)
domain\:\frac{1}{-5x+8}
f(x)= 1/(x^2-1)
f(x)=\frac{1}{x^{2}-1}
domain of (x+2)/(x-3)
domain\:\frac{x+2}{x-3}
critical f(x)=x^4-7x^2+8
critical\:f(x)=x^{4}-7x^{2}+8
slope of 3x-5y=10
slope\:3x-5y=10
inverse of f(x)=12-9x
inverse\:f(x)=12-9x
inflection 1/(x+1)
inflection\:\frac{1}{x+1}
inflection 2x^5-4x^3-6x^2-7x
inflection\:2x^{5}-4x^{3}-6x^{2}-7x
inverse of f(x)= 7/8
inverse\:f(x)=\frac{7}{8}
asymptotes of (x^2+x)/(3-x)
asymptotes\:\frac{x^{2}+x}{3-x}
domain of sin(e^{-x})
domain\:\sin(e^{-x})
critical f(x)=-9x^2+2x^3
critical\:f(x)=-9x^{2}+2x^{3}
intercepts of y=6tan(0.2x)
intercepts\:y=6\tan(0.2x)
1
..
339
340
341
342
343
..
1324