extreme f(x)=xsqrt(600-x)
|
extreme\:f(x)=x\sqrt{600-x}
|
f(x,y)=x(y+1)+(x+y+1)
|
f(x,y)=x(y+1)+(x+y+1)
|
extreme f(x)=((x^2-5))/(x+3)
|
extreme\:f(x)=\frac{(x^{2}-5)}{x+3}
|
domain of g(x)=sqrt(5-x)
|
domain\:g(x)=\sqrt{5-x}
|
extreme f(x)= 25/2 x^2-ln(x)
|
extreme\:f(x)=\frac{25}{2}x^{2}-\ln(x)
|
extreme f(x)=-2x^3+33x^2-144x+1
|
extreme\:f(x)=-2x^{3}+33x^{2}-144x+1
|
extreme y=-2x^2-3x+1
|
extreme\:y=-2x^{2}-3x+1
|
extreme f(x)=4x^3ln(4x)
|
extreme\:f(x)=4x^{3}\ln(4x)
|
extreme f(x)=6x+ln(x)
|
extreme\:f(x)=6x+\ln(x)
|
f(x,y)=x*y^2-6*x^2-3x+2*x*y+9
|
f(x,y)=x\cdot\:y^{2}-6\cdot\:x^{2}-3x+2\cdot\:x\cdot\:y+9
|
U(x,y)=ln(1+xy)
|
U(x,y)=\ln(1+xy)
|
extreme f(x)=(-5x)/(x^2+5)
|
extreme\:f(x)=\frac{-5x}{x^{2}+5}
|
monotone intervals f(x)=x^3-6x^2+12x-5
|
monotone\:intervals\:f(x)=x^{3}-6x^{2}+12x-5
|
f(x,y)=x^3+y^2-6xy+9x+5y+2
|
f(x,y)=x^{3}+y^{2}-6xy+9x+5y+2
|
f(x,y)=100*(y-x^2)^2+(x-1)^2
|
f(x,y)=100\cdot\:(y-x^{2})^{2}+(x-1)^{2}
|
extreme f(x)=x^4-8x^3+9
|
extreme\:f(x)=x^{4}-8x^{3}+9
|
extreme f(x)=sqrt(x^2+25)
|
extreme\:f(x)=\sqrt{x^{2}+25}
|
extreme y=x^x,x>0
|
extreme\:y=x^{x},x>0
|
extreme f(x)=x^3-4x^2-3x+7
|
extreme\:f(x)=x^{3}-4x^{2}-3x+7
|
extreme f(x)=x^2+y^2-2y-9
|
extreme\:f(x)=x^{2}+y^{2}-2y-9
|
extreme f(x)=-0.4x^2+90x-2000
|
extreme\:f(x)=-0.4x^{2}+90x-2000
|
extreme f(x)=x^3+3x^2+4,-3<= x<= 2
|
extreme\:f(x)=x^{3}+3x^{2}+4,-3\le\:x\le\:2
|
inverse of f(x)=4x
|
inverse\:f(x)=4x
|
extreme f(x)=((x-5)^2)/(x+9)
|
extreme\:f(x)=\frac{(x-5)^{2}}{x+9}
|
extreme f(x)=x^5-2x^3+1
|
extreme\:f(x)=x^{5}-2x^{3}+1
|
extreme x^4-8x^3+6
|
extreme\:x^{4}-8x^{3}+6
|
extreme f(x)= x/(x^2+x+1)
|
extreme\:f(x)=\frac{x}{x^{2}+x+1}
|
extreme f(x)=-x+cos(3pix)
|
extreme\:f(x)=-x+\cos(3πx)
|
extreme f(x)=3x^3-36x^2+108x+8,0<= x<= 9
|
extreme\:f(x)=3x^{3}-36x^{2}+108x+8,0\le\:x\le\:9
|
f(x)=7+x-x^2-In(x+3)^3
|
f(x)=7+x-x^{2}-In(x+3)^{3}
|
extreme f(x)=4x^2-8x
|
extreme\:f(x)=4x^{2}-8x
|
f(x,y)=xy^2-x^2y-3xy
|
f(x,y)=xy^{2}-x^{2}y-3xy
|
extreme f(x)=x^4-6x^2,0<= x<= 3
|
extreme\:f(x)=x^{4}-6x^{2},0\le\:x\le\:3
|
asymptotes of f(x)= 3/(x^2+4x)
|
asymptotes\:f(x)=\frac{3}{x^{2}+4x}
|
critical points of x/(x^2-4)
|
critical\:points\:\frac{x}{x^{2}-4}
|
f(x,y)=(x+4y)e^{x-y^2}
|
f(x,y)=(x+4y)e^{x-y^{2}}
|
V(r,h)=31pir2h
|
V(r,h)=31πr2h
|
extreme f(x)=x^3-3x^2-45x+9
|
extreme\:f(x)=x^{3}-3x^{2}-45x+9
|
extreme f(x)=4x^2-2x
|
extreme\:f(x)=4x^{2}-2x
|
extreme f(x)=(x^2-1)e^x
|
extreme\:f(x)=(x^{2}-1)e^{x}
|
extreme f(x)= 1/(x-1)
|
extreme\:f(x)=\frac{1}{x-1}
|
f(x,y)= 1/3 x^3-3x^2+(y^2)/4+xy+13x-y+2
|
f(x,y)=\frac{1}{3}x^{3}-3x^{2}+\frac{y^{2}}{4}+xy+13x-y+2
|
minimum x^2-4
|
minimum\:x^{2}-4
|
extreme (x^2)/(sqrt(x+1))
|
extreme\:\frac{x^{2}}{\sqrt{x+1}}
|
extreme x^{1/3}(x+3)^{2/3}
|
extreme\:x^{\frac{1}{3}}(x+3)^{\frac{2}{3}}
|
range of f(x)=2x+1
|
range\:f(x)=2x+1
|
minimum x^2+3
|
minimum\:x^{2}+3
|
extreme f(x)=6x^2-24x+18
|
extreme\:f(x)=6x^{2}-24x+18
|
extreme f(x)=x(17-45+2x)(45/2-x)
|
extreme\:f(x)=x(17-45+2x)(\frac{45}{2}-x)
|
extreme f(x)=x^4(x-3)^3
|
extreme\:f(x)=x^{4}(x-3)^{3}
|
extreme f(x)=-x^3+12x^2+45x-52
|
extreme\:f(x)=-x^{3}+12x^{2}+45x-52
|
extreme f(x)=sqrt((x-1)^2+(4-4x^2))
|
extreme\:f(x)=\sqrt{(x-1)^{2}+(4-4x^{2})}
|
extreme f(x)=x^3+y^3-30xy
|
extreme\:f(x)=x^{3}+y^{3}-30xy
|
extreme f(x)=3x^4-54x^2+4
|
extreme\:f(x)=3x^{4}-54x^{2}+4
|
extreme f(x)=(5x)/(x+1)
|
extreme\:f(x)=\frac{5x}{x+1}
|
extreme f(x)=x^3-2x^2-4x
|
extreme\:f(x)=x^{3}-2x^{2}-4x
|
extreme points of f(x)=5x^3-15x
|
extreme\:points\:f(x)=5x^{3}-15x
|
extreme y=(x^3(3x-8))/(12)
|
extreme\:y=\frac{x^{3}(3x-8)}{12}
|
f(x,y)=xy^2-6x^2-3y^2
|
f(x,y)=xy^{2}-6x^{2}-3y^{2}
|
extreme f(x)=e^{3x}(7-x)
|
extreme\:f(x)=e^{3x}(7-x)
|
extreme ((-x^2-8x+20))/((x^2-5x)^2)
|
extreme\:\frac{(-x^{2}-8x+20)}{(x^{2}-5x)^{2}}
|
extreme f(x)=2x^2+1
|
extreme\:f(x)=2x^{2}+1
|
extreme f(x)=((4x^2))/(x-2)
|
extreme\:f(x)=\frac{(4x^{2})}{x-2}
|
extreme f(x)=2x^2-2
|
extreme\:f(x)=2x^{2}-2
|
extreme f(x)=-(3x)/(x^2+1)
|
extreme\:f(x)=-\frac{3x}{x^{2}+1}
|
extreme x^{1/9}+1
|
extreme\:x^{\frac{1}{9}}+1
|
extreme f(x)=(3x)/(x-2)
|
extreme\:f(x)=\frac{3x}{x-2}
|
inverse of f(x)=sqrt(9x+9)
|
inverse\:f(x)=\sqrt{9x+9}
|
f(x,y)=xy+8/x+8/y
|
f(x,y)=xy+\frac{8}{x}+\frac{8}{y}
|
extreme f(x,y)=x^3+y^3-300x-75y-3
|
extreme\:f(x,y)=x^{3}+y^{3}-300x-75y-3
|
minimum x^2+xy+y^2-7y+16
|
minimum\:x^{2}+xy+y^{2}-7y+16
|
extreme f(x)=x^2+(12)/x
|
extreme\:f(x)=x^{2}+\frac{12}{x}
|
extreme f(x)=7cos(x),0<= x<= 2pi
|
extreme\:f(x)=7\cos(x),0\le\:x\le\:2π
|
extreme f(x)=x^3-12x^2-27x+10,-2<= x<= 0
|
extreme\:f(x)=x^{3}-12x^{2}-27x+10,-2\le\:x\le\:0
|
extreme f(x,y)=-7x^2-3y^2+7x-6y+8
|
extreme\:f(x,y)=-7x^{2}-3y^{2}+7x-6y+8
|
extreme f(x)=3xe^{-x^2}
|
extreme\:f(x)=3xe^{-x^{2}}
|
L(x,y)=x^2D^3+(2x+1)D^2+D+xy
|
L(x,y)=x^{2}D^{3}+(2x+1)D^{2}+D+xy
|
inverse of f(x)=3sqrt(-2x+6)-4
|
inverse\:f(x)=3\sqrt{-2x+6}-4
|
f(x,y)=x^3+y^3-300x-75y-3
|
f(x,y)=x^{3}+y^{3}-300x-75y-3
|
extreme f(x)=3x^2+8x-4
|
extreme\:f(x)=3x^{2}+8x-4
|
extreme f(x)=10x^2+20x
|
extreme\:f(x)=10x^{2}+20x
|
f(x,y)=30y-20x-10
|
f(x,y)=30y-20x-10
|
T(x,y)=50-6x^2-2y^2
|
T(x,y)=50-6x^{2}-2y^{2}
|
extreme f(x,y)=x^2y+2xy^2-12xy+2
|
extreme\:f(x,y)=x^{2}y+2xy^{2}-12xy+2
|
extreme f(x,y)=2x^3
|
extreme\:f(x,y)=2x^{3}
|
minimum 25x^2-260x+1700
|
minimum\:25x^{2}-260x+1700
|
domain of f(x)=2^{x-2}-3
|
domain\:f(x)=2^{x-2}-3
|
extreme x+(31)/x
|
extreme\:x+\frac{31}{x}
|
extreme f(x)=x^4+4x+1
|
extreme\:f(x)=x^{4}+4x+1
|
extreme (x^2-12)/(x+4)
|
extreme\:\frac{x^{2}-12}{x+4}
|
extreme f(x)=x^4-8x^3+16x^2
|
extreme\:f(x)=x^{4}-8x^{3}+16x^{2}
|
extreme f(x)=16+4x-x^2,0<= x<= 5
|
extreme\:f(x)=16+4x-x^{2},0\le\:x\le\:5
|
extreme f(x)=(x^3)/3-x^2-3x-1
|
extreme\:f(x)=\frac{x^{3}}{3}-x^{2}-3x-1
|
f(x,y)=x^4+y^4-16xy
|
f(x,y)=x^{4}+y^{4}-16xy
|
inflection points of f(x)=4x^3-6x^2+7x-2
|
inflection\:points\:f(x)=4x^{3}-6x^{2}+7x-2
|
extreme f(x)=\sqrt[3]{x^2+125}
|
extreme\:f(x)=\sqrt[3]{x^{2}+125}
|
extreme f(x)=xe^{(-x^2)/(162)}
|
extreme\:f(x)=xe^{\frac{-x^{2}}{162}}
|
extreme f(x)=(x^4)/4-(3x^2)/2
|
extreme\:f(x)=\frac{x^{4}}{4}-\frac{3x^{2}}{2}
|
extreme f(x)=x(x^2-3)
|
extreme\:f(x)=x(x^{2}-3)
|
f(x,y)=3x^2+10xy+7y^2+3xy^2+8x^2y
|
f(x,y)=3x^{2}+10xy+7y^{2}+3xy^{2}+8x^{2}y
|