f(x,y)=ye^{-x}
|
f(x,y)=ye^{-x}
|
extreme f(x)=-3x^2-x+2
|
extreme\:f(x)=-3x^{2}-x+2
|
extreme f(x)=x^2+2x+1
|
extreme\:f(x)=x^{2}+2x+1
|
f(x,y)=(x-1)(y+2)(x+y-2)
|
f(x,y)=(x-1)(y+2)(x+y-2)
|
asymptotes of 4t^2
|
asymptotes\:4t^{2}
|
extreme f(x,y)=(13720)/x+(13720)/y+5xy
|
extreme\:f(x,y)=\frac{13720}{x}+\frac{13720}{y}+5xy
|
extreme f(x)=4x^3-8x
|
extreme\:f(x)=4x^{3}-8x
|
extreme f(x)=12x^5+45x^4-360x^3+6
|
extreme\:f(x)=12x^{5}+45x^{4}-360x^{3}+6
|
extreme f(x)=(x^2+3x-1)^{1/3}
|
extreme\:f(x)=(x^{2}+3x-1)^{\frac{1}{3}}
|
extreme f(x)=x^3-4x^2-x+1
|
extreme\:f(x)=x^{3}-4x^{2}-x+1
|
f(x,y)=(20000)/(3+x^2+y^2)
|
f(x,y)=\frac{20000}{3+x^{2}+y^{2}}
|
extreme f(x)=2x^3-15x^2+24x,0<= x<= 5
|
extreme\:f(x)=2x^{3}-15x^{2}+24x,0\le\:x\le\:5
|
extreme y= x/(x^2+64)
|
extreme\:y=\frac{x}{x^{2}+64}
|
extreme f(x)=3x^4-324x,0<= x<= 4
|
extreme\:f(x)=3x^{4}-324x,0\le\:x\le\:4
|
extreme f(x)=sqrt(-x^2+1),-1<= x<= 0
|
extreme\:f(x)=\sqrt{-x^{2}+1},-1\le\:x\le\:0
|
inverse of f(x)=(8x-26)/6 =x-3
|
inverse\:f(x)=\frac{8x-26}{6}=x-3
|
extreme f(x)=x^5-x^3+8,-1<= x<= 1
|
extreme\:f(x)=x^{5}-x^{3}+8,-1\le\:x\le\:1
|
extreme f(x)=2x^2-8x+2
|
extreme\:f(x)=2x^{2}-8x+2
|
extreme f(x,y)=-2x^2+yx^2-y^2
|
extreme\:f(x,y)=-2x^{2}+yx^{2}-y^{2}
|
extreme f(x)=12x+6
|
extreme\:f(x)=12x+6
|
extreme f(x)=x(23-47+2x)(47/2-x)
|
extreme\:f(x)=x(23-47+2x)(\frac{47}{2}-x)
|
f(x)=3x+2y
|
f(x)=3x+2y
|
extreme f(x)=9x^2-126x+2
|
extreme\:f(x)=9x^{2}-126x+2
|
extreme f(x)=-x^2+7
|
extreme\:f(x)=-x^{2}+7
|
extreme f(x)=2x^3+3x^2-36x+15
|
extreme\:f(x)=2x^{3}+3x^{2}-36x+15
|
extreme y=e^{(2-x)}+x^2-x/2
|
extreme\:y=e^{(2-x)}+x^{2}-\frac{x}{2}
|
range of 1/2 sqrt(x+5)-3
|
range\:\frac{1}{2}\sqrt{x+5}-3
|
extreme cos(2x)
|
extreme\:\cos(2x)
|
extreme f(x)=-6x^2-9xy-7y^2-99x-96y+5
|
extreme\:f(x)=-6x^{2}-9xy-7y^{2}-99x-96y+5
|
extreme f(x)=log_{e}(x)
|
extreme\:f(x)=\log_{e}(x)
|
P(x,y)=x+y^2-10x^2y^2+9y^6
|
P(x,y)=x+y^{2}-10x^{2}y^{2}+9y^{6}
|
extreme f(x)=-x^{2/3}(x-1),-1<= x<= 1
|
extreme\:f(x)=-x^{\frac{2}{3}}(x-1),-1\le\:x\le\:1
|
extreme f(x)=tsqrt(25-t^2)
|
extreme\:f(x)=t\sqrt{25-t^{2}}
|
extreme f(x)=(x+6)/(sqrt(x^2+6))
|
extreme\:f(x)=\frac{x+6}{\sqrt{x^{2}+6}}
|
extreme ln(x^2+49)
|
extreme\:\ln(x^{2}+49)
|
f(x,y)=sqrt(9-2x^2-y^2)
|
f(x,y)=\sqrt{9-2x^{2}-y^{2}}
|
domain of x^4-2x^3
|
domain\:x^{4}-2x^{3}
|
domain of f(x)=|2x-6|
|
domain\:f(x)=|2x-6|
|
extreme points of f(x)=-x^3+3x^2+1
|
extreme\:points\:f(x)=-x^{3}+3x^{2}+1
|
f(x,y)=2xy-3x^3y^3
|
f(x,y)=2xy-3x^{3}y^{3}
|
extreme f(x)=-x^3-9x^2+165x+1300
|
extreme\:f(x)=-x^{3}-9x^{2}+165x+1300
|
f(x,y)=(x^2-1)(y^2-1)
|
f(x,y)=(x^{2}-1)(y^{2}-1)
|
extreme 2/3 x^3-4x^3+12
|
extreme\:\frac{2}{3}x^{3}-4x^{3}+12
|
extreme f(x)=(4860)/x+15x+700508
|
extreme\:f(x)=\frac{4860}{x}+15x+700508
|
extreme 2sec(t)+tan(t)
|
extreme\:2\sec(t)+\tan(t)
|
extreme f(x)=(e^{3x})/(3x-3)
|
extreme\:f(x)=\frac{e^{3x}}{3x-3}
|
extreme f(x)=-2sin^2(x)
|
extreme\:f(x)=-2\sin^{2}(x)
|
extreme f(x)= 1/4 x^4+2/3 x^3-3/2 x^2+4
|
extreme\:f(x)=\frac{1}{4}x^{4}+\frac{2}{3}x^{3}-\frac{3}{2}x^{2}+4
|
extreme f(x)=xy^2=9
|
extreme\:f(x)=xy^{2}=9
|
domain of 2+9x
|
domain\:2+9x
|
extreme f(x)=sin(θ)
|
extreme\:f(x)=\sin(θ)
|
f(x,y)=x^2+4y^2-2ln(xy)
|
f(x,y)=x^{2}+4y^{2}-2\ln(xy)
|
extreme f(x)=-x^3+2x^2+1,-1<= x<= 1
|
extreme\:f(x)=-x^{3}+2x^{2}+1,-1\le\:x\le\:1
|
extreme f(x)= 1/4 x^2+x^3-2
|
extreme\:f(x)=\frac{1}{4}x^{2}+x^{3}-2
|
extreme f(x)=x^3-x^2-x+3
|
extreme\:f(x)=x^{3}-x^{2}-x+3
|
extreme f(x)=x^3-x^2-x+4
|
extreme\:f(x)=x^{3}-x^{2}-x+4
|
extreme f(x)=2x+8/x
|
extreme\:f(x)=2x+\frac{8}{x}
|
minimum f(x,y)=3x^4+3y^4-2xy
|
minimum\:f(x,y)=3x^{4}+3y^{4}-2xy
|
extreme f(x)=4x^5-60x^3
|
extreme\:f(x)=4x^{5}-60x^{3}
|
parity f(x)=6x^5
|
parity\:f(x)=6x^{5}
|
extreme f(x,y)=x^3-3xy-y^3
|
extreme\:f(x,y)=x^{3}-3xy-y^{3}
|
f(x,y)=(x^2+y^2)e^{-x}
|
f(x,y)=(x^{2}+y^{2})e^{-x}
|
extreme 3x^2-18x+15
|
extreme\:3x^{2}-18x+15
|
extreme 2x^3-3x^2-12x+18
|
extreme\:2x^{3}-3x^{2}-12x+18
|
extreme f(x)=e^{-x^6},-2<= x<= 1
|
extreme\:f(x)=e^{-x^{6}},-2\le\:x\le\:1
|
extreme f(x)=x^6-3x^4
|
extreme\:f(x)=x^{6}-3x^{4}
|
extreme f(x,y)=4e^{-5x-5y}
|
extreme\:f(x,y)=4e^{-5x-5y}
|
f(x,y)=x^2+3xy+4y^2-6x+2y
|
f(x,y)=x^{2}+3xy+4y^{2}-6x+2y
|
extreme f(x)=250+8x^3+x^4
|
extreme\:f(x)=250+8x^{3}+x^{4}
|
inverse of f(x)=-6x
|
inverse\:f(x)=-6x
|
f(x,y)=(x+4)/(y^2-x^2)
|
f(x,y)=\frac{x+4}{y^{2}-x^{2}}
|
f(x,y)=(x-1)^2+y^3-3y^2-9y+5
|
f(x,y)=(x-1)^{2}+y^{3}-3y^{2}-9y+5
|
extreme f(x)=sqrt(3)cos(3x)+sin(3x)
|
extreme\:f(x)=\sqrt{3}\cos(3x)+\sin(3x)
|
f(x,y)=xe^{-y}+y/x
|
f(x,y)=xe^{-y}+\frac{y}{x}
|
f(x,y)=x^2+3xy+y^2+5x-7y
|
f(x,y)=x^{2}+3xy+y^{2}+5x-7y
|
extreme f(x)=(x-1)^2(x-2)(x-3)^3
|
extreme\:f(x)=(x-1)^{2}(x-2)(x-3)^{3}
|
extreme f(x)=(3-sqrt(9-x^2))/x
|
extreme\:f(x)=\frac{3-\sqrt{9-x^{2}}}{x}
|
extreme f(x)=2x^3+xy^2+5x^2+y^2+4
|
extreme\:f(x)=2x^{3}+xy^{2}+5x^{2}+y^{2}+4
|
extreme 2cos(3x)+2sin(10)y+3x-10y=0
|
extreme\:2\cos(3x)+2\sin(10^{\circ\:})y+3x-10y=0
|
f(x,y)=xy+y^2
|
f(x,y)=xy+y^{2}
|
inflection points of 8xe^{7x}
|
inflection\:points\:8xe^{7x}
|
extreme f(x)=3x^2-5x
|
extreme\:f(x)=3x^{2}-5x
|
extreme f(x)= 3/7 (x^2-1)^{2/3}
|
extreme\:f(x)=\frac{3}{7}(x^{2}-1)^{\frac{2}{3}}
|
extreme 12sin(3x)
|
extreme\:12\sin(3x)
|
f(x,y)=xy+2xy^2
|
f(x,y)=xy+2xy^{2}
|
extreme (x+4)^3(3x-2)^2
|
extreme\:(x+4)^{3}(3x-2)^{2}
|
extreme f(x)=3x^2-12
|
extreme\:f(x)=3x^{2}-12
|
f(x,y)=x^2+xy+1/2 y^2-2x+y
|
f(x,y)=x^{2}+xy+\frac{1}{2}y^{2}-2x+y
|
extreme f(x)=14x^2-2x^32y^2+4xy
|
extreme\:f(x)=14x^{2}-2x^{3}2y^{2}+4xy
|
minimum 2x^2+y^2+xy-3x
|
minimum\:2x^{2}+y^{2}+xy-3x
|
f(x,y)=4x^2-xy+4y^2
|
f(x,y)=4x^{2}-xy+4y^{2}
|
range of f(x)=2+sqrt(2x-4)
|
range\:f(x)=2+\sqrt{2x-4}
|
extreme f(x)=x^4-72x^2
|
extreme\:f(x)=x^{4}-72x^{2}
|
extreme f(x)=-3x^4ln(3x),(0,4)
|
extreme\:f(x)=-3x^{4}\ln(3x),(0,4)
|
extreme f(x)=|\sqrt[3]{x^2-2x}|
|
extreme\:f(x)=\left|\sqrt[3]{x^{2}-2x}\right|
|
minimum (2x-1)^2
|
minimum\:(2x-1)^{2}
|
extreme f(x,y)=5x^2-xy+3y^2
|
extreme\:f(x,y)=5x^{2}-xy+3y^{2}
|
extreme 2sin(x)+sin(2x)
|
extreme\:2\sin(x)+\sin(2x)
|
f(t)=t+(t^2+t)*u(t-3)+(t-t^2)u(t-5)
|
f(t)=t+(t^{2}+t)\cdot\:u(t-3)+(t-t^{2})u(t-5)
|
extreme 2x^2y-4y^2-8y-4
|
extreme\:2x^{2}y-4y^{2}-8y-4
|