extreme f(x)=x|x|
|
extreme\:f(x)=x\left|x\right|
|
E(x)=x^4-8x+3x^2+xm-5-11
|
E(x)=x^{4}-8x+3x^{2}+xm-5-11
|
f(x,y)=y^3+(6x^2)y-6x^2-6y^2+3
|
f(x,y)=y^{3}+(6x^{2})y-6x^{2}-6y^{2}+3
|
extreme x^5
|
extreme\:x^{5}
|
extreme f(x)=x^2-8x+15
|
extreme\:f(x)=x^{2}-8x+15
|
extreme f(x)=3x^4-4x^3-36x^2+5
|
extreme\:f(x)=3x^{4}-4x^{3}-36x^{2}+5
|
extreme f(x)=x+log_{10}(1-x)
|
extreme\:f(x)=x+\log_{10}(1-x)
|
asymptotes of 4-4/(x-1)
|
asymptotes\:4-\frac{4}{x-1}
|
extreme f(x)=-x^4+16x^3-16x+11
|
extreme\:f(x)=-x^{4}+16x^{3}-16x+11
|
extreme f(x)=x^3+x^2-5x
|
extreme\:f(x)=x^{3}+x^{2}-5x
|
extreme f(x)=x^3+x^2-2x
|
extreme\:f(x)=x^{3}+x^{2}-2x
|
f(x,y)=(x+2y-7)^2+(2x+y-5)^2
|
f(x,y)=(x+2y-7)^{2}+(2x+y-5)^{2}
|
extreme f(x)=x^2+9x-8
|
extreme\:f(x)=x^{2}+9x-8
|
f(x,y)=x^3-xy+y^3
|
f(x,y)=x^{3}-xy+y^{3}
|
extreme f(x)=x^2+(520)/x
|
extreme\:f(x)=x^{2}+\frac{520}{x}
|
f(x,y)=xy+2x-ln(x^2y)
|
f(x,y)=xy+2x-\ln(x^{2}y)
|
extreme 2x^3-2x^2-2x+3
|
extreme\:2x^{3}-2x^{2}-2x+3
|
extreme f(x)=6x^2-12,-4<= x<= 1
|
extreme\:f(x)=6x^{2}-12,-4\le\:x\le\:1
|
domain of f(x)=(x+4)/(x^2-4)
|
domain\:f(x)=\frac{x+4}{x^{2}-4}
|
f(y,x)=0.6x+0.1y-0.01xy
|
f(y,x)=0.6x+0.1y-0.01xy
|
extreme f(x)=3x^4-8x^3+10
|
extreme\:f(x)=3x^{4}-8x^{3}+10
|
extreme f(x)=x^2-7x+12
|
extreme\:f(x)=x^{2}-7x+12
|
extreme f(x)=(x-2)^{1/3}
|
extreme\:f(x)=(x-2)^{\frac{1}{3}}
|
extreme f(x)=-x^3+x^2-9x+8,-1<= x<= 5
|
extreme\:f(x)=-x^{3}+x^{2}-9x+8,-1\le\:x\le\:5
|
extreme f(x)=2x^3-6x^2-18x+9
|
extreme\:f(x)=2x^{3}-6x^{2}-18x+9
|
extreme f(x)=x^2-1/x
|
extreme\:f(x)=x^{2}-\frac{1}{x}
|
extreme f(x)=2x^2-2x^4
|
extreme\:f(x)=2x^{2}-2x^{4}
|
parity f(x)=(2x^3-3x-9)/(9x^3-5x+3)
|
parity\:f(x)=\frac{2x^{3}-3x-9}{9x^{3}-5x+3}
|
extreme f(x)=2e^{x^2-2x+1}
|
extreme\:f(x)=2e^{x^{2}-2x+1}
|
extreme f(x,y)=6x^2+2y^2
|
extreme\:f(x,y)=6x^{2}+2y^{2}
|
extreme f(x)=(2x-5)/x
|
extreme\:f(x)=\frac{2x-5}{x}
|
extreme 5/(x+6)
|
extreme\:\frac{5}{x+6}
|
extreme f(x)=x^5-5x^4-x^3+28x^2-2x
|
extreme\:f(x)=x^{5}-5x^{4}-x^{3}+28x^{2}-2x
|
extreme f(x)=(x-1)(x+2)
|
extreme\:f(x)=(x-1)(x+2)
|
critical points of f(x)=2-3x^2
|
critical\:points\:f(x)=2-3x^{2}
|
range of (x-2)^2
|
range\:(x-2)^{2}
|
extreme f(x,y)=x^2+y^2-1
|
extreme\:f(x,y)=x^{2}+y^{2}-1
|
extreme x^2-4x+9
|
extreme\:x^{2}-4x+9
|
extreme f(x,y)=7ye^x-7e^y
|
extreme\:f(x,y)=7ye^{x}-7e^{y}
|
minimum f(x,y)=x^4+y^4-2xy
|
minimum\:f(x,y)=x^{4}+y^{4}-2xy
|
extreme f(x)=sqrt(x)ln(10x)
|
extreme\:f(x)=\sqrt{x}\ln(10x)
|
extreme f(x)=8y^2+x^2-x^2y
|
extreme\:f(x)=8y^{2}+x^{2}-x^{2}y
|
extreme f(x)=(4x-3)/x
|
extreme\:f(x)=\frac{4x-3}{x}
|
extreme f(x)=(x^2-1)/(-5x+1/2)
|
extreme\:f(x)=\frac{x^{2}-1}{-5x+\frac{1}{2}}
|
extreme f(x)=-2x^3-33x^2-108x-1
|
extreme\:f(x)=-2x^{3}-33x^{2}-108x-1
|
inverse of y=2^{3x-1}
|
inverse\:y=2^{3x-1}
|
extreme 3x+1
|
extreme\:3x+1
|
extreme 3x+5
|
extreme\:3x+5
|
extreme f(x)= x/(sqrt(2))-2sin(x/2)
|
extreme\:f(x)=\frac{x}{\sqrt{2}}-2\sin(\frac{x}{2})
|
extreme f(x,y)=x^2+y^2-3x-xy
|
extreme\:f(x,y)=x^{2}+y^{2}-3x-xy
|
extreme x-x^3
|
extreme\:x-x^{3}
|
extreme f(x)=2x-3\sqrt[3]{x^2}
|
extreme\:f(x)=2x-3\sqrt[3]{x^{2}}
|
f(x,y)=4x+6y-x^2-y^2
|
f(x,y)=4x+6y-x^{2}-y^{2}
|
extreme f(x)=x^2+4x+16
|
extreme\:f(x)=x^{2}+4x+16
|
extreme f(x)=-2x^2+4x-4
|
extreme\:f(x)=-2x^{2}+4x-4
|
domain of sqrt((x+2))
|
domain\:\sqrt{(x+2)}
|
extreme f(x)=-2x^2+4x+4
|
extreme\:f(x)=-2x^{2}+4x+4
|
extreme (x^3-3x)/(x^2-1)
|
extreme\:\frac{x^{3}-3x}{x^{2}-1}
|
f(x,y)=x^3-6xy+8y^3
|
f(x,y)=x^{3}-6xy+8y^{3}
|
minimum f(x)=15x^{2/3}-10x
|
minimum\:f(x)=15x^{\frac{2}{3}}-10x
|
extreme f(x,y)=e^{x-y}(x^2-2y^2)
|
extreme\:f(x,y)=e^{x-y}(x^{2}-2y^{2})
|
extreme f(x)=2x+6/x
|
extreme\:f(x)=2x+\frac{6}{x}
|
extreme sqrt(x-2)e^{-x/2}
|
extreme\:\sqrt{x-2}e^{-\frac{x}{2}}
|
f(x,y)=x^3-3xy+1/2 y^2
|
f(x,y)=x^{3}-3xy+\frac{1}{2}y^{2}
|
extreme f(x,y)=3x-x^3-2y^2+y^4
|
extreme\:f(x,y)=3x-x^{3}-2y^{2}+y^{4}
|
range of f(x)=4+x^2-4x+y^2+2y=0
|
range\:f(x)=4+x^{2}-4x+y^{2}+2y=0
|
extreme f(x)=2x+(18)/x
|
extreme\:f(x)=2x+\frac{18}{x}
|
extreme f(x)=(x+2)/(x^2-x-6)
|
extreme\:f(x)=\frac{x+2}{x^{2}-x-6}
|
extreme f(x)=(x^2-x+1)/(x^2+1)
|
extreme\:f(x)=\frac{x^{2}-x+1}{x^{2}+1}
|
extreme f(x)=7+3x+x^2
|
extreme\:f(x)=7+3x+x^{2}
|
extreme-0.25x^2+40x+300
|
extreme\:-0.25x^{2}+40x+300
|
f(x,y)=2x^2+2xy+y^2+4x-2y+1
|
f(x,y)=2x^{2}+2xy+y^{2}+4x-2y+1
|
extreme x+cos(x)
|
extreme\:x+\cos(x)
|
extreme f(x)=(900x)/(10+45x)
|
extreme\:f(x)=\frac{900x}{10+45x}
|
extreme (5x)/(x^2-1)
|
extreme\:\frac{5x}{x^{2}-1}
|
critical points of f(x)=x^3+1
|
critical\:points\:f(x)=x^{3}+1
|
extreme f(x)=x^3+2x^2-4x+2
|
extreme\:f(x)=x^{3}+2x^{2}-4x+2
|
P(x)=8x4-24x2+r-1
|
P(x)=8x4-24x2+r-1
|
extreme x^3-3x^2-23x+8
|
extreme\:x^{3}-3x^{2}-23x+8
|
extreme 6x^5+33x^4-30x^3+100
|
extreme\:6x^{5}+33x^{4}-30x^{3}+100
|
f(x,y)=x^2+y^2-10
|
f(x,y)=x^{2}+y^{2}-10
|
extreme f(x)=((x+1))/(x^2+x+1)
|
extreme\:f(x)=\frac{(x+1)}{x^{2}+x+1}
|
extreme f(x)=x^4-x^3-2x^2
|
extreme\:f(x)=x^{4}-x^{3}-2x^{2}
|
extreme (ln(x))/(sqrt(x))
|
extreme\:\frac{\ln(x)}{\sqrt{x}}
|
extreme f(x)=sqrt(x),0<= x<= 16
|
extreme\:f(x)=\sqrt{x},0\le\:x\le\:16
|
extreme f(x)=(x+6)(x-3)^2
|
extreme\:f(x)=(x+6)(x-3)^{2}
|
parity f(x)= 7/((x^{16)+x^8)}
|
parity\:f(x)=\frac{7}{(x^{16}+x^{8})}
|
extreme f(x)=2x^3-24x^2+72x+10
|
extreme\:f(x)=2x^{3}-24x^{2}+72x+10
|
extreme f(x)=x^2-2x,0<= x<= 4
|
extreme\:f(x)=x^{2}-2x,0\le\:x\le\:4
|
extreme f(x)=x^3-x^2-8x+8,-2<= x<= 0
|
extreme\:f(x)=x^{3}-x^{2}-8x+8,-2\le\:x\le\:0
|
extreme f(x)=(x^2-11x+54)/(x-9)
|
extreme\:f(x)=\frac{x^{2}-11x+54}{x-9}
|
2xy
|
2xy
|
extreme f(x)= 8/3 x^3+32x^2+120x+9
|
extreme\:f(x)=\frac{8}{3}x^{3}+32x^{2}+120x+9
|
extreme f(x)=2x+ln(x)
|
extreme\:f(x)=2x+\ln(x)
|
extreme f(x)=-2x^3-3x^2+x+1
|
extreme\:f(x)=-2x^{3}-3x^{2}+x+1
|
extreme f(x)=2θ-3sin(θ)
|
extreme\:f(x)=2θ-3\sin(θ)
|
extreme f(x,y)=2xln(y^2-4)
|
extreme\:f(x,y)=2x\ln(y^{2}-4)
|
parity f(x)=-2x^3+5x
|
parity\:f(x)=-2x^{3}+5x
|
extreme f(x)= 1/(sqrt(x-1))
|
extreme\:f(x)=\frac{1}{\sqrt{x-1}}
|
f(x,y)=6x-3y+4
|
f(x,y)=6x-3y+4
|