extreme f(x)=x^3+y^2-6xy+6x+3y-2
|
extreme\:f(x)=x^{3}+y^{2}-6xy+6x+3y-2
|
extreme f(x)=(x^2+1)^{2/3}
|
extreme\:f(x)=(x^{2}+1)^{\frac{2}{3}}
|
extreme f(x)=2x^4-7x^3+4x^2+2x+3
|
extreme\:f(x)=2x^{4}-7x^{3}+4x^{2}+2x+3
|
extreme f(x)=sqrt(5t^2+24t+136)
|
extreme\:f(x)=\sqrt{5t^{2}+24t+136}
|
extreme 4x^3-3x^2-36x+17
|
extreme\:4x^{3}-3x^{2}-36x+17
|
extreme f(x)=(ln(x))/(x^{5/2)}
|
extreme\:f(x)=\frac{\ln(x)}{x^{\frac{5}{2}}}
|
range of 3x^2+6x+2
|
range\:3x^{2}+6x+2
|
extreme f(x)=(e^x)/(x^5)
|
extreme\:f(x)=\frac{e^{x}}{x^{5}}
|
extreme y=7-6x-x^3
|
extreme\:y=7-6x-x^{3}
|
extreme f(x)= 1/(x^3)
|
extreme\:f(x)=\frac{1}{x^{3}}
|
extreme f(x)=x^2-1,-2<= x<= 1
|
extreme\:f(x)=x^{2}-1,-2\le\:x\le\:1
|
extreme f(x)=-x^3+x^2+8x+9
|
extreme\:f(x)=-x^{3}+x^{2}+8x+9
|
extreme f(x)=x^2+5x-3
|
extreme\:f(x)=x^{2}+5x-3
|
extreme f(x)=x^2+5x-4
|
extreme\:f(x)=x^{2}+5x-4
|
extreme f(x,y)=xye^{(x+2y)}
|
extreme\:f(x,y)=xye^{(x+2y)}
|
domain of x^2-3x
|
domain\:x^{2}-3x
|
extreme f(x)=x^3+y^3-3x-3y
|
extreme\:f(x)=x^{3}+y^{3}-3x-3y
|
g(x,y)=x^3-2y^2-2y^4+3x^2y
|
g(x,y)=x^{3}-2y^{2}-2y^{4}+3x^{2}y
|
extreme f(x)=5+9x^2-6x^3
|
extreme\:f(x)=5+9x^{2}-6x^{3}
|
extreme f(x,y)=6-x^2-4y^2
|
extreme\:f(x,y)=6-x^{2}-4y^{2}
|
extreme f(x)=2x^2+(2048)/x+13
|
extreme\:f(x)=2x^{2}+\frac{2048}{x}+13
|
extreme f(x)=(x+3)^{4/3},-6<= x<= 6
|
extreme\:f(x)=(x+3)^{\frac{4}{3}},-6\le\:x\le\:6
|
extreme xy-2x-2y-x^2-y^2
|
extreme\:xy-2x-2y-x^{2}-y^{2}
|
f(x)=25x-25xe^{-y}-50y-x^2
|
f(x)=25x-25xe^{-y}-50y-x^{2}
|
extreme f(x)=csc^2(x)-2/(sqrt(3))cot(x)
|
extreme\:f(x)=\csc^{2}(x)-\frac{2}{\sqrt{3}}\cot(x)
|
asymptotes of y=(x^3-x)/(1-3x^2)
|
asymptotes\:y=\frac{x^{3}-x}{1-3x^{2}}
|
extreme f(x)=(3x)/(sqrt(4x^2+1))
|
extreme\:f(x)=\frac{3x}{\sqrt{4x^{2}+1}}
|
extreme f(x)=3-sqrt(x)
|
extreme\:f(x)=3-\sqrt{x}
|
extreme f(x)=x^2-14x+44
|
extreme\:f(x)=x^{2}-14x+44
|
extreme x/(x^2+100)
|
extreme\:\frac{x}{x^{2}+100}
|
extreme f(x)=(4860)/x+15x+717904
|
extreme\:f(x)=\frac{4860}{x}+15x+717904
|
extreme f(x,y)=-x^3+4xy-2y^2+4x+1
|
extreme\:f(x,y)=-x^{3}+4xy-2y^{2}+4x+1
|
extreme f(x,y)=x^3+y^3+9x^2-3y^2+15x-9y
|
extreme\:f(x,y)=x^{3}+y^{3}+9x^{2}-3y^{2}+15x-9y
|
extreme f(x)=2x+sin(4x)
|
extreme\:f(x)=2x+\sin(4x)
|
extreme y=(x^2-7)/(x-4)
|
extreme\:y=\frac{x^{2}-7}{x-4}
|
line (1,3),(-1,-1)
|
line\:(1,3),(-1,-1)
|
shift f(x)=-3sin(-2x+(pi)/2)
|
shift\:f(x)=-3\sin(-2x+\frac{\pi}{2})
|
extreme f(x)=x^2+y^2-2x+4y
|
extreme\:f(x)=x^{2}+y^{2}-2x+4y
|
extreme f(x)=-2x^3+39x^2-216x+9
|
extreme\:f(x)=-2x^{3}+39x^{2}-216x+9
|
extreme f(x)=-2x^2+12x-10
|
extreme\:f(x)=-2x^{2}+12x-10
|
f(x)=ye^{-x}
|
f(x)=ye^{-x}
|
extreme f(x)=(x+1)/(x^2-4x-5)
|
extreme\:f(x)=\frac{x+1}{x^{2}-4x-5}
|
f(-7/3 , 14/3)=x^2+xy+y^2-7y+16
|
f(-\frac{7}{3},\frac{14}{3})=x^{2}+xy+y^{2}-7y+16
|
extreme f(x,y)=3x^2-9x+9xy^2
|
extreme\:f(x,y)=3x^{2}-9x+9xy^{2}
|
extreme 2θ-4sin(θ)
|
extreme\:2θ-4\sin(θ)
|
f(1.1,1.1)=2x+3y-x^3-2y^2
|
f(1.1,1.1)=2x+3y-x^{3}-2y^{2}
|
periodicity of f(x)=cos(x)
|
periodicity\:f(x)=\cos(x)
|
extreme f(x)=9-x
|
extreme\:f(x)=9-x
|
extreme f(x)=x^9e^{2x}
|
extreme\:f(x)=x^{9}e^{2x}
|
extreme f(x)=x(18-40+2x)(40/2-x)
|
extreme\:f(x)=x(18-40+2x)(\frac{40}{2}-x)
|
extreme f(x)=0.001x^2+3.8x-70
|
extreme\:f(x)=0.001x^{2}+3.8x-70
|
extreme f(x)=x^3-27x+51
|
extreme\:f(x)=x^{3}-27x+51
|
extreme f(x)=x^3-27x+50
|
extreme\:f(x)=x^{3}-27x+50
|
extreme g(x)=x^3-3x+2
|
extreme\:g(x)=x^{3}-3x+2
|
extreme f(x)=x^3-3x+11
|
extreme\:f(x)=x^{3}-3x+11
|
f(x,y)=sqrt(144-9x^2-16y^2)
|
f(x,y)=\sqrt{144-9x^{2}-16y^{2}}
|
inverse of f(x)=e^{3x+2}
|
inverse\:f(x)=e^{3x+2}
|
extreme f(x)=24x^3-3x^4
|
extreme\:f(x)=24x^{3}-3x^{4}
|
extreme 3x^2-12xy+y^3+3y^2
|
extreme\:3x^{2}-12xy+y^{3}+3y^{2}
|
extreme f(x,y)=4x^3-y^3+2x^2+3y^2
|
extreme\:f(x,y)=4x^{3}-y^{3}+2x^{2}+3y^{2}
|
extreme 1+7/x-3/(x^2)
|
extreme\:1+\frac{7}{x}-\frac{3}{x^{2}}
|
extreme f(x)= x/(x^2+1),-2<= x<= 2
|
extreme\:f(x)=\frac{x}{x^{2}+1},-2\le\:x\le\:2
|
extreme f(x)=-3+x-x^2
|
extreme\:f(x)=-3+x-x^{2}
|
extreme f(x)=5+54x+2x^3,0<= x<= 4
|
extreme\:f(x)=5+54x+2x^{3},0\le\:x\le\:4
|
extreme f(x)=x^3-4x^2+5x
|
extreme\:f(x)=x^{3}-4x^{2}+5x
|
extreme f(x)=(x^3)/3-4x^2+12x,0<= x<= 7
|
extreme\:f(x)=\frac{x^{3}}{3}-4x^{2}+12x,0\le\:x\le\:7
|
f(x,y)=x^2+y^2-1
|
f(x,y)=x^{2}+y^{2}-1
|
domain of 3x^4-18x^2
|
domain\:3x^{4}-18x^{2}
|
extreme f(x)=2x^3-12x^2+18x-5
|
extreme\:f(x)=2x^{3}-12x^{2}+18x-5
|
extreme x^2+4xy+y^2
|
extreme\:x^{2}+4xy+y^{2}
|
f(x,y)=x^3+x^2+y^2+y^3
|
f(x,y)=x^{3}+x^{2}+y^{2}+y^{3}
|
minimum x+2
|
minimum\:x+2
|
extreme f(x,y)=80x+80y-x^2-y^2
|
extreme\:f(x,y)=80x+80y-x^{2}-y^{2}
|
extreme f(x)=x^2+(800)/x
|
extreme\:f(x)=x^{2}+\frac{800}{x}
|
minimum f(x)= x/(x^2+64)
|
minimum\:f(x)=\frac{x}{x^{2}+64}
|
extreme f(x)= 1/3 x^3+5x^2+24
|
extreme\:f(x)=\frac{1}{3}x^{3}+5x^{2}+24
|
extreme f(x)=xln(x)-2x,1<= x<= 4
|
extreme\:f(x)=x\ln(x)-2x,1\le\:x\le\:4
|
extreme f(x)=-2x^2-1,-4<= x<= 3
|
extreme\:f(x)=-2x^{2}-1,-4\le\:x\le\:3
|
monotone intervals x/(x^2+1)
|
monotone\:intervals\:\frac{x}{x^{2}+1}
|
extreme f(x)= x/(ln(2x))
|
extreme\:f(x)=\frac{x}{\ln(2x)}
|
extreme f(x,y)=4-x^2-y^2+xy+x
|
extreme\:f(x,y)=4-x^{2}-y^{2}+xy+x
|
extreme f(x)=(x^2)/(x^2+3),-1<= x<= 1
|
extreme\:f(x)=\frac{x^{2}}{x^{2}+3},-1\le\:x\le\:1
|
extreme f(x)=-2-x+x^2
|
extreme\:f(x)=-2-x+x^{2}
|
extreme f(x)=(x^2)/(x^2+1),-2<= x<= 2
|
extreme\:f(x)=\frac{x^{2}}{x^{2}+1},-2\le\:x\le\:2
|
extreme f(x)=xsqrt(1-5x)
|
extreme\:f(x)=x\sqrt{1-5x}
|
f(x,y)=9x^2+3xy+9y^2+7xy^2+3x^2y
|
f(x,y)=9x^{2}+3xy+9y^{2}+7xy^{2}+3x^{2}y
|
minimum y=-5x^2-6x+2
|
minimum\:y=-5x^{2}-6x+2
|
extreme f(x)=x^3+y^3-6xy+27
|
extreme\:f(x)=x^{3}+y^{3}-6xy+27
|
extreme f(x)=4(x^{(10/3)})-10(x^{(4/3)})
|
extreme\:f(x)=4(x^{(\frac{10}{3})})-10(x^{(\frac{4}{3})})
|
intercepts of f(x)=x^2+4x
|
intercepts\:f(x)=x^{2}+4x
|
minimum f(x)= x/(x^2+49)
|
minimum\:f(x)=\frac{x}{x^{2}+49}
|
extreme f(x)=x^2+x-30
|
extreme\:f(x)=x^{2}+x-30
|
extreme f(x)=x^2+8x+5
|
extreme\:f(x)=x^{2}+8x+5
|
extreme f(x)=x^3+4x
|
extreme\:f(x)=x^{3}+4x
|
extreme f(x)=(x^2)/(x^4+16)
|
extreme\:f(x)=\frac{x^{2}}{x^{4}+16}
|
extreme f(x)=-2x^3+6x^2+12
|
extreme\:f(x)=-2x^{3}+6x^{2}+12
|
extreme (x-2)^3*(x+2)
|
extreme\:(x-2)^{3}\cdot\:(x+2)
|
extreme f(x)=(x+2)/(x^2-7x-18)
|
extreme\:f(x)=\frac{x+2}{x^{2}-7x-18}
|
intercepts of f(x)=4x^2+25y^2=100
|
intercepts\:f(x)=4x^{2}+25y^{2}=100
|
extreme 5xy-7x^2+3x-6y+2
|
extreme\:5xy-7x^{2}+3x-6y+2
|