extreme f(x)=3x^2-6x+2
|
extreme\:f(x)=3x^{2}-6x+2
|
extreme y=x^2-6x+10
|
extreme\:y=x^{2}-6x+10
|
extreme f(x)=4x^3-48x-1
|
extreme\:f(x)=4x^{3}-48x-1
|
extreme f(x)=xsqrt(465-x)
|
extreme\:f(x)=x\sqrt{465-x}
|
extreme f(x)= 3/(1-x^2)
|
extreme\:f(x)=\frac{3}{1-x^{2}}
|
extreme f(x)=x^2+8x+12
|
extreme\:f(x)=x^{2}+8x+12
|
extreme f(x)=5x^{2/3}+9
|
extreme\:f(x)=5x^{\frac{2}{3}}+9
|
extreme f(x)=3x^2+2
|
extreme\:f(x)=3x^{2}+2
|
range of f(x)=(2x+3)/(x-1)
|
range\:f(x)=\frac{2x+3}{x-1}
|
minimum f(x,y)=200y^2+x^2-x^2y
|
minimum\:f(x,y)=200y^{2}+x^{2}-x^{2}y
|
minimum x^2+x-6
|
minimum\:x^{2}+x-6
|
extreme f(x)= 7/4 x^2-21/2 x+51/4
|
extreme\:f(x)=\frac{7}{4}x^{2}-\frac{21}{2}x+\frac{51}{4}
|
F(x,y)=7x3y2+34x2y5
|
F(x,y)=7x3y2+34x2y5
|
extreme f(x)=7x^9-9x^7-7,-3<= x<= 3
|
extreme\:f(x)=7x^{9}-9x^{7}-7,-3\le\:x\le\:3
|
extreme f(x)=(e^x)/(3+e^x)
|
extreme\:f(x)=\frac{e^{x}}{3+e^{x}}
|
extreme f(x)=8x^3-x^4
|
extreme\:f(x)=8x^{3}-x^{4}
|
critical points of (x+2)(x-3)(x+4)
|
critical\:points\:(x+2)(x-3)(x+4)
|
extreme f(x)=x^3-27
|
extreme\:f(x)=x^{3}-27
|
minimum g(x)=x^2+2
|
minimum\:g(x)=x^{2}+2
|
f(x,y)=(x-1)4+y^4+64(x-1)y+14
|
f(x,y)=(x-1)4+y^{4}+64(x-1)y+14
|
extreme f(x)= 5/((x-5)^2)
|
extreme\:f(x)=\frac{5}{(x-5)^{2}}
|
minimum y=(x^3)/3+4x^2+15x+7
|
minimum\:y=\frac{x^{3}}{3}+4x^{2}+15x+7
|
extreme x^2-3x-4
|
extreme\:x^{2}-3x-4
|
f(x)=e^xln(x)y
|
f(x)=e^{x}\ln(x)y
|
extreme f(x)=2x-4sqrt(x-7)
|
extreme\:f(x)=2x-4\sqrt{x-7}
|
extreme f(x)=(2x+1)/(2x)
|
extreme\:f(x)=\frac{2x+1}{2x}
|
midpoint (3,-2)(-1,-1)
|
midpoint\:(3,-2)(-1,-1)
|
extreme f(x)=x^2log_{10}(4)(x)
|
extreme\:f(x)=x^{2}\log_{10}(4)(x)
|
f(x)=22+13y*10z
|
f(x)=22+13y\cdot\:10z
|
extreme f(x)=(-4)/(x-7)
|
extreme\:f(x)=\frac{-4}{x-7}
|
f(x,y)=4x^2+7xy+2y^2
|
f(x,y)=4x^{2}+7xy+2y^{2}
|
extreme f(x)=(2(x+3))/(x^2+x-2)
|
extreme\:f(x)=\frac{2(x+3)}{x^{2}+x-2}
|
minimum 4x^2+16x+9
|
minimum\:4x^{2}+16x+9
|
f(x,y)=(x^2+4y^2)e^{1-x^2-y^2}
|
f(x,y)=(x^{2}+4y^{2})e^{1-x^{2}-y^{2}}
|
extreme f(x)=(-3)/(x-5)
|
extreme\:f(x)=\frac{-3}{x-5}
|
extreme f(x)=(-4)/(x-5)
|
extreme\:f(x)=\frac{-4}{x-5}
|
symmetry y=-x^2-10x+56
|
symmetry\:y=-x^{2}-10x+56
|
domain of (x^2)/(x-4)
|
domain\:\frac{x^{2}}{x-4}
|
extreme f(x)=2x^3-3x^2-12x-18
|
extreme\:f(x)=2x^{3}-3x^{2}-12x-18
|
f(x,y)=18xy-x^3-9y^2
|
f(x,y)=18xy-x^{3}-9y^{2}
|
extreme f(x)=2x^3-24x^2+42x-6
|
extreme\:f(x)=2x^{3}-24x^{2}+42x-6
|
extreme f(x)=x^7
|
extreme\:f(x)=x^{7}
|
extreme f(x)=3x^2+6x+8
|
extreme\:f(x)=3x^{2}+6x+8
|
extreme (a*(pi/2-x))
|
extreme\:(a\cdot\:(\frac{π}{2}-x))
|
extreme f(x)=6x+6
|
extreme\:f(x)=6x+6
|
extreme f(x)=x^2(2-y)-y^3+3y^2+9y
|
extreme\:f(x)=x^{2}(2-y)-y^{3}+3y^{2}+9y
|
inverse of (5-x)\div (8)
|
inverse\:(5-x)\div\:(8)
|
f(t)=u(t)+2t+3t^2
|
f(t)=u(t)+2t+3t^{2}
|
extreme f(x)=x^2(1-x)^2
|
extreme\:f(x)=x^{2}(1-x)^{2}
|
extreme f(x)=16+4x-x^2
|
extreme\:f(x)=16+4x-x^{2}
|
extreme f(x)=xe^{-x},0<= x<= 2
|
extreme\:f(x)=xe^{-x},0\le\:x\le\:2
|
extreme y=|x+4|+4/(|x|-3)
|
extreme\:y=\left|x+4\right|+\frac{4}{\left|x\right|-3}
|
extreme 6e^{x-4}
|
extreme\:6e^{x-4}
|
extreme f(x)=(9x)/(x^2+6)
|
extreme\:f(x)=\frac{9x}{x^{2}+6}
|
f(x)=x^2-6x+9-4y^2
|
f(x)=x^{2}-6x+9-4y^{2}
|
extreme f(x)=x^{8/7}+8x^{1/7}
|
extreme\:f(x)=x^{\frac{8}{7}}+8x^{\frac{1}{7}}
|
extreme f(x)= x/(sqrt(x-6))
|
extreme\:f(x)=\frac{x}{\sqrt{x-6}}
|
slope of y=3x+29
|
slope\:y=3x+29
|
extreme f(x)=-x^2-5x+2
|
extreme\:f(x)=-x^{2}-5x+2
|
extreme f(x,y)=x^2+y^2+8x-12y-9
|
extreme\:f(x,y)=x^{2}+y^{2}+8x-12y-9
|
f(x,y)=2xy+3x+4y
|
f(x,y)=2xy+3x+4y
|
f(x,y)=420x^2-80x+150y^2-75y+xy
|
f(x,y)=420x^{2}-80x+150y^{2}-75y+xy
|
extreme f(x)=-(2x)/(7x^2+4)
|
extreme\:f(x)=-\frac{2x}{7x^{2}+4}
|
P(x,y)=(x+1)2-(y-2)2
|
P(x,y)=(x+1)2-(y-2)2
|
f(z)=x^2+y^2
|
f(z)=x^{2}+y^{2}
|
extreme f(x)=2x^3-3x^2-36x+54
|
extreme\:f(x)=2x^{3}-3x^{2}-36x+54
|
extreme f(x)=x^3-3x^2+6x-2
|
extreme\:f(x)=x^{3}-3x^{2}+6x-2
|
inflection points of x/(sqrt(x^2+2))
|
inflection\:points\:\frac{x}{\sqrt{x^{2}+2}}
|
extreme f(x)=2x^3+3x^2-12x+1,-1<= x<= 2
|
extreme\:f(x)=2x^{3}+3x^{2}-12x+1,-1\le\:x\le\:2
|
extreme y=5x^2ln(x/4)
|
extreme\:y=5x^{2}\ln(\frac{x}{4})
|
extreme (x^2-8)/(x+3)
|
extreme\:\frac{x^{2}-8}{x+3}
|
extreme f(x)=(-5)/(x-6)
|
extreme\:f(x)=\frac{-5}{x-6}
|
f(x,y)=sqrt(400-9x^2-64y^2)
|
f(x,y)=\sqrt{400-9x^{2}-64y^{2}}
|
extreme f(x)=x^3-6x^2-15x+2
|
extreme\:f(x)=x^{3}-6x^{2}-15x+2
|
extreme 9xln(x)
|
extreme\:9x\ln(x)
|
extreme f(x)=2tan(x)-3,-pi/3 <= x<= pi/3
|
extreme\:f(x)=2\tan(x)-3,-\frac{π}{3}\le\:x\le\:\frac{π}{3}
|
extreme f(x)=(5x)^x
|
extreme\:f(x)=(5x)^{x}
|
extreme g(x)=x^{1/3}-x^{-2/3}
|
extreme\:g(x)=x^{\frac{1}{3}}-x^{-\frac{2}{3}}
|
extreme f(x)=(5x^2)/(x^2-9)
|
extreme\:f(x)=\frac{5x^{2}}{x^{2}-9}
|
extreme f(x)=(x-5)^{3/4}
|
extreme\:f(x)=(x-5)^{\frac{3}{4}}
|
extreme 32ln(x)-x^2
|
extreme\:32\ln(x)-x^{2}
|
extreme f(x)=x^3-2x^2-4x+1
|
extreme\:f(x)=x^{3}-2x^{2}-4x+1
|
extreme f(x,y)=3x^2+2y^2-6x-4y+16
|
extreme\:f(x,y)=3x^{2}+2y^{2}-6x-4y+16
|
extreme f(x)=2x^5-4x^2+5x-3
|
extreme\:f(x)=2x^{5}-4x^{2}+5x-3
|
extreme 2^x
|
extreme\:2^{x}
|
extreme points of sin(x)+cos(x)
|
extreme\:points\:\sin(x)+\cos(x)
|
extreme y=(4-x)4^x
|
extreme\:y=(4-x)4^{x}
|
extreme-8t^2+36t+99
|
extreme\:-8t^{2}+36t+99
|
extreme f(x)=2x^4-2x^3
|
extreme\:f(x)=2x^{4}-2x^{3}
|
extreme (sqrt(x^2+1))/(sqrt(1-x))
|
extreme\:\frac{\sqrt{x^{2}+1}}{\sqrt{1-x}}
|
extreme f(x)=6x^3-9x^2-216x+3
|
extreme\:f(x)=6x^{3}-9x^{2}-216x+3
|
extreme f(x,y)=338y^2+x^2-x^2y
|
extreme\:f(x,y)=338y^{2}+x^{2}-x^{2}y
|
extreme f(x)=-5x^3+15x+2
|
extreme\:f(x)=-5x^{3}+15x+2
|
extreme f(x)=-x^2+6,-3<= x<= 4
|
extreme\:f(x)=-x^{2}+6,-3\le\:x\le\:4
|
extreme f(x)=(x+4)/(sqrt(x^2+4))
|
extreme\:f(x)=\frac{x+4}{\sqrt{x^{2}+4}}
|
asymptotes of f(x)=(x+6)/(x-6)
|
asymptotes\:f(x)=\frac{x+6}{x-6}
|
extreme f(x)=6-5x-x^3
|
extreme\:f(x)=6-5x-x^{3}
|
extreme f(x)=(ln(x))/(9x),1<= x<= 4
|
extreme\:f(x)=\frac{\ln(x)}{9x},1\le\:x\le\:4
|
extreme f(x)=(x^2-2x+1)/(x-9)
|
extreme\:f(x)=\frac{x^{2}-2x+1}{x-9}
|
extreme f(x)=(x+3)^4+3
|
extreme\:f(x)=(x+3)^{4}+3
|