extreme e^{2x}(x^2-2)
|
extreme\:e^{2x}(x^{2}-2)
|
extreme (2x)/(1-x^2)
|
extreme\:\frac{2x}{1-x^{2}}
|
minimum z=4x+5y
|
minimum\:z=4x+5y
|
extreme f(x)=((x^2-7))/(x+4)
|
extreme\:f(x)=\frac{(x^{2}-7)}{x+4}
|
extreme f(x)=cos(x)-4x,0<= x<= 4pi
|
extreme\:f(x)=\cos(x)-4x,0\le\:x\le\:4π
|
asymptotes of (x^2+x-20)/(x+5)
|
asymptotes\:\frac{x^{2}+x-20}{x+5}
|
extreme f(x)=-2x^2+2x,-3<= x<= 2
|
extreme\:f(x)=-2x^{2}+2x,-3\le\:x\le\:2
|
extreme f(x)=(ln(x))/(x^{10)}
|
extreme\:f(x)=\frac{\ln(x)}{x^{10}}
|
f(x,y)= 7/(-91x^2-3y^2+9)
|
f(x,y)=\frac{7}{-91x^{2}-3y^{2}+9}
|
f(x,y)=(2x+3)(y^{-1}+2)
|
f(x,y)=(2x+3)(y^{-1}+2)
|
f(x,y)=11xy+5x^2
|
f(x,y)=11xy+5x^{2}
|
extreme ln(x^2-36)
|
extreme\:\ln(x^{2}-36)
|
extreme (x+2)/(x-2)
|
extreme\:\frac{x+2}{x-2}
|
extreme f(x)=2e^{-x^2}
|
extreme\:f(x)=2e^{-x^{2}}
|
f(x)=(xy)/(x-y)
|
f(x)=\frac{xy}{x-y}
|
critical points of X^3
|
critical\:points\:X^{3}
|
extreme f(x)=(x^7)/7-x^5+5
|
extreme\:f(x)=\frac{x^{7}}{7}-x^{5}+5
|
extreme f(x)=x^3+3x^2+9,-3<= x<= 2
|
extreme\:f(x)=x^{3}+3x^{2}+9,-3\le\:x\le\:2
|
extreme f(x)=((x^2+x+1))/(x^2)
|
extreme\:f(x)=\frac{(x^{2}+x+1)}{x^{2}}
|
extreme f(x)=x^3*e^{x-1}
|
extreme\:f(x)=x^{3}\cdot\:e^{x-1}
|
extreme y=x^3+x^2-x
|
extreme\:y=x^{3}+x^{2}-x
|
extreme f(x)=(6x^2)/(x-6),-3<= x<= 2
|
extreme\:f(x)=\frac{6x^{2}}{x-6},-3\le\:x\le\:2
|
extreme f(x)=sqrt(x)-\sqrt[3]{x}
|
extreme\:f(x)=\sqrt{x}-\sqrt[3]{x}
|
extreme f(x)=ln(x^2+7x+14),-4<= x<= 1
|
extreme\:f(x)=\ln(x^{2}+7x+14),-4\le\:x\le\:1
|
intercepts of f(x)=(x-6)^2-9
|
intercepts\:f(x)=(x-6)^{2}-9
|
extreme f(x)=(x-1)/(x-2)
|
extreme\:f(x)=\frac{x-1}{x-2}
|
extreme f(x)=2x^2-36ln(x)
|
extreme\:f(x)=2x^{2}-36\ln(x)
|
extreme y=x^2-8x+12
|
extreme\:y=x^{2}-8x+12
|
x(s,t)=1+2s+4t
|
x(s,t)=1+2s+4t
|
extreme f(x)=x^3-x^2-x+10
|
extreme\:f(x)=x^{3}-x^{2}-x+10
|
f(x,y)=x^3+xy^2+6xy
|
f(x,y)=x^{3}+xy^{2}+6xy
|
extreme f(x)=5cos(2x)+5
|
extreme\:f(x)=5\cos(2x)+5
|
extreme x^2y-2xy+2y^2x
|
extreme\:x^{2}y-2xy+2y^{2}x
|
f(x,y)=4xy-2x^4-y^2+4x-2y
|
f(x,y)=4xy-2x^{4}-y^{2}+4x-2y
|
extreme points of f(x)=x^3+3/2 x^2-6x+10
|
extreme\:points\:f(x)=x^{3}+\frac{3}{2}x^{2}-6x+10
|
critical points of f(x)=3x^2-4x
|
critical\:points\:f(x)=3x^{2}-4x
|
extreme f(x)=5(x-3)^2(2x+1)(x+4)^3
|
extreme\:f(x)=5(x-3)^{2}(2x+1)(x+4)^{3}
|
extreme f(x)=2x-1.75x^2+1.1^3-0.25x^4
|
extreme\:f(x)=2x-1.75x^{2}+1.1^{3}-0.25x^{4}
|
extreme f(xy)=-x^2-y^2+22x+18y-102
|
extreme\:f(xy)=-x^{2}-y^{2}+22x+18y-102
|
minimum x^2+2x+1
|
minimum\:x^{2}+2x+1
|
extreme (x+4)/(x^2-3x-28)
|
extreme\:\frac{x+4}{x^{2}-3x-28}
|
extreme f(x)=|x-1|
|
extreme\:f(x)=\left|x-1\right|
|
extreme f(x)=x^2(180-2x)
|
extreme\:f(x)=x^{2}(180-2x)
|
extreme f(x)=6xln(x)
|
extreme\:f(x)=6x\ln(x)
|
extreme f(x)=10x-9
|
extreme\:f(x)=10x-9
|
extreme f(x)=x^4-4x^3+16x-16
|
extreme\:f(x)=x^{4}-4x^{3}+16x-16
|
domain of f(x)=(sqrt(x+4))/(x-8)
|
domain\:f(x)=\frac{\sqrt{x+4}}{x-8}
|
extreme (9x)/(x^2+36)
|
extreme\:\frac{9x}{x^{2}+36}
|
extreme f(x)=6sin(x)+6cos(x)
|
extreme\:f(x)=6\sin(x)+6\cos(x)
|
extreme f(x)=ln(1-x)+10x
|
extreme\:f(x)=\ln(1-x)+10x
|
extreme f(x)=10-|x|
|
extreme\:f(x)=10-\left|x\right|
|
extreme f(x)=-5/3 x^3+15x^2+35x+10
|
extreme\:f(x)=-\frac{5}{3}x^{3}+15x^{2}+35x+10
|
extreme f(x)=f(x)=30+20x^3-5x^4-x^5
|
extreme\:f(x)=f(x)=30+20x^{3}-5x^{4}-x^{5}
|
f(x,y)=-4x+15y
|
f(x,y)=-4x+15y
|
extreme f(x)=sin(2x)-cos(x)-4x
|
extreme\:f(x)=\sin(2x)-\cos(x)-4x
|
extreme y=1+x^2
|
extreme\:y=1+x^{2}
|
extreme f(x)=2x^4-196x^2-2
|
extreme\:f(x)=2x^{4}-196x^{2}-2
|
parallel y= 2/5 x-3
|
parallel\:y=\frac{2}{5}x-3
|
extreme f(x)=2x^4-196x^2+4
|
extreme\:f(x)=2x^{4}-196x^{2}+4
|
extreme f(x)=|3x-4|
|
extreme\:f(x)=\left|3x-4\right|
|
f(x,y)=8-3x^2+6x-2y^2+8y
|
f(x,y)=8-3x^{2}+6x-2y^{2}+8y
|
extreme f(x)=3t+1/t
|
extreme\:f(x)=3t+\frac{1}{t}
|
extreme f(x)=(x+1)e^{2x}
|
extreme\:f(x)=(x+1)e^{2x}
|
extreme x+3
|
extreme\:x+3
|
extreme y=24x^3-3x^4=x^3(24-3x)
|
extreme\:y=24x^{3}-3x^{4}=x^{3}(24-3x)
|
extreme f(x)=x^2+5x-77
|
extreme\:f(x)=x^{2}+5x-77
|
extreme f(x)=x^5-5x^4+5x^3-10
|
extreme\:f(x)=x^{5}-5x^{4}+5x^{3}-10
|
extreme f(x)=8x-8ln(x^2),(0,+infinity)
|
extreme\:f(x)=8x-8\ln(x^{2}),(0,+\infty\:)
|
critical points of x^2-6x-7
|
critical\:points\:x^{2}-6x-7
|
f(x,y)=7x^2y-8xy^3+9y^3
|
f(x,y)=7x^{2}y-8xy^{3}+9y^{3}
|
extreme (8-x^3)/(x^2)
|
extreme\:\frac{8-x^{3}}{x^{2}}
|
extreme f(x)=x^2log_{4}(x)
|
extreme\:f(x)=x^{2}\log_{4}(x)
|
extreme f(x)=(sqrt(2-x^2))/(2x+1)+7
|
extreme\:f(x)=\frac{\sqrt{2-x^{2}}}{2x+1}+7
|
extreme f(x,y)=(4x^2+y^2)e^{-4y^2-x^2}
|
extreme\:f(x,y)=(4x^{2}+y^{2})e^{-4y^{2}-x^{2}}
|
extreme f(x)=x^3+3x^2-9x-7
|
extreme\:f(x)=x^{3}+3x^{2}-9x-7
|
extreme f(x)=x^3+3x^2-9x-2
|
extreme\:f(x)=x^{3}+3x^{2}-9x-2
|
extreme f(x,y)=2x^4-x^2+10y^2
|
extreme\:f(x,y)=2x^{4}-x^{2}+10y^{2}
|
extreme f(x)=3x+(12)/x
|
extreme\:f(x)=3x+\frac{12}{x}
|
extreme points of f(x)=(x-1)/(x+1)
|
extreme\:points\:f(x)=\frac{x-1}{x+1}
|
extreme f(x,y)=5xy
|
extreme\:f(x,y)=5xy
|
extreme x^6-2x^5+8x^4
|
extreme\:x^{6}-2x^{5}+8x^{4}
|
extreme f(x)=1x+1
|
extreme\:f(x)=1x+1
|
extreme f(x)=(x-1)(x-6)^3+6,1<= x<= 8
|
extreme\:f(x)=(x-1)(x-6)^{3}+6,1\le\:x\le\:8
|
f(x,y)=sqrt(400-16x^2-64y^2)
|
f(x,y)=\sqrt{400-16x^{2}-64y^{2}}
|
f(x,y)=y^3+x^3-21/2 y^2-3x+30y
|
f(x,y)=y^{3}+x^{3}-\frac{21}{2}y^{2}-3x+30y
|
extreme f(x)=-x^3+9x^2+165x-300
|
extreme\:f(x)=-x^{3}+9x^{2}+165x-300
|
extreme f(x)= 1/x ,2<= x<= 3
|
extreme\:f(x)=\frac{1}{x},2\le\:x\le\:3
|
extreme f(x)=x^2-18x+86
|
extreme\:f(x)=x^{2}-18x+86
|
extreme f(x)=(x-2)^2(x+3)^3
|
extreme\:f(x)=(x-2)^{2}(x+3)^{3}
|
midpoint (-9,-4)(-3,6)
|
midpoint\:(-9,-4)(-3,6)
|
extreme (-3)/(x-4)
|
extreme\:\frac{-3}{x-4}
|
f(x,y)=x^3+y^3+12xy+5
|
f(x,y)=x^{3}+y^{3}+12xy+5
|
extreme ln(x+y)-ln(1+xy)
|
extreme\:\ln(x+y)-\ln(1+xy)
|
extreme f(x)= x/(\sqrt[3]{x^2-2)}
|
extreme\:f(x)=\frac{x}{\sqrt[3]{x^{2}-2}}
|
extreme f(x)=x^3-x^2-8x+12,-2<= x<= 0
|
extreme\:f(x)=x^{3}-x^{2}-8x+12,-2\le\:x\le\:0
|
extreme f(x,y)=4-x^2-y^2-y
|
extreme\:f(x,y)=4-x^{2}-y^{2}-y
|
f(x,y)=(2x^2+4y^2+1)/2
|
f(x,y)=\frac{2x^{2}+4y^{2}+1}{2}
|
extreme f(x,y)=e^{-(x^2+y^2)}
|
extreme\:f(x,y)=e^{-(x^{2}+y^{2})}
|
parity |3x-5|
|
parity\:|3x-5|
|
extreme y=xe^{-3x^2}
|
extreme\:y=xe^{-3x^{2}}
|