extreme f(x)=3θ-6sin(θ)
|
extreme\:f(x)=3θ-6\sin(θ)
|
extreme f(x)=9x^4-4x^3,-2<= x<= 2
|
extreme\:f(x)=9x^{4}-4x^{3},-2\le\:x\le\:2
|
extreme f(x)=x^3-7x^2+15x-9
|
extreme\:f(x)=x^{3}-7x^{2}+15x-9
|
f(x)=x^2+2y^2+x^2y+11
|
f(x)=x^{2}+2y^{2}+x^{2}y+11
|
extreme f(x,y)=6e^y-6ye^x
|
extreme\:f(x,y)=6e^{y}-6ye^{x}
|
extreme f(x)=12(1+1/x+1/(x^2))
|
extreme\:f(x)=12(1+\frac{1}{x}+\frac{1}{x^{2}})
|
extreme sin(2x),0<= x<= pi
|
extreme\:\sin(2x),0\le\:x\le\:π
|
domain of f(x)=(1-3x)/(2+x)
|
domain\:f(x)=\frac{1-3x}{2+x}
|
extreme f(x)=5x+3x^{-1}
|
extreme\:f(x)=5x+3x^{-1}
|
f(x,y)=(x^2+y^2)e^{x^2-y^2}
|
f(x,y)=(x^{2}+y^{2})e^{x^{2}-y^{2}}
|
extreme f(x)=x^3(x-2)^2
|
extreme\:f(x)=x^{3}(x-2)^{2}
|
extreme x^3e^{-x}
|
extreme\:x^{3}e^{-x}
|
f(x,y)=xln(x^2+y^2)
|
f(x,y)=x\ln(x^{2}+y^{2})
|
extreme f(x)=x^{12/5}-6x^{2/5}+2
|
extreme\:f(x)=x^{\frac{12}{5}}-6x^{\frac{2}{5}}+2
|
extreme f(x)=x_{-arctan(x-5)}
|
extreme\:f(x)=x_{-\arctan(x-5)}
|
extreme 10x-5xln(x)
|
extreme\:10x-5x\ln(x)
|
extreme f(x)=x+4x^{-1}
|
extreme\:f(x)=x+4x^{-1}
|
y=Insqrt(9-2x^2)
|
y=In\sqrt{9-2x^{2}}
|
domain of f(x)=x^2+5x+6
|
domain\:f(x)=x^{2}+5x+6
|
extreme f(x)=2x^3-33x^2+144x
|
extreme\:f(x)=2x^{3}-33x^{2}+144x
|
f(x,y)=((x+y)^2)/2-2ln(xy)
|
f(x,y)=\frac{(x+y)^{2}}{2}-2\ln(xy)
|
f(x,y)=|xy|
|
f(x,y)=\left|xy\right|
|
extreme f(x)=x^3-3/2 x^2,-3<= x<= 2
|
extreme\:f(x)=x^{3}-\frac{3}{2}x^{2},-3\le\:x\le\:2
|
extreme f(x)=5-2x
|
extreme\:f(x)=5-2x
|
extreme f(x)=2+8x-x^2
|
extreme\:f(x)=2+8x-x^{2}
|
domain of f(x)=x2-4
|
domain\:f(x)=x2-4
|
f(x,y)=5x^4-x^2+6y^2
|
f(x,y)=5x^{4}-x^{2}+6y^{2}
|
extreme f(x)=8-2x^2
|
extreme\:f(x)=8-2x^{2}
|
extreme f(x)= 2/(x+7)
|
extreme\:f(x)=\frac{2}{x+7}
|
extreme f(x)=(x-2)^5
|
extreme\:f(x)=(x-2)^{5}
|
extreme f(x)=-16-7x-x^2
|
extreme\:f(x)=-16-7x-x^{2}
|
f(x,y)=-5x^2-8y^2-2xy+42x+102y
|
f(x,y)=-5x^{2}-8y^{2}-2xy+42x+102y
|
f(x)=y^3+3x^2y-6x^2-6y^2+2
|
f(x)=y^{3}+3x^{2}y-6x^{2}-6y^{2}+2
|
extreme x^2+2xy+2y^2+2x-2y
|
extreme\:x^{2}+2xy+2y^{2}+2x-2y
|
extreme f(x)=t^3-15t^2+72t+8
|
extreme\:f(x)=t^{3}-15t^{2}+72t+8
|
intercepts of f(x)=(10x-18)/(x^2-7x+10)
|
intercepts\:f(x)=\frac{10x-18}{x^{2}-7x+10}
|
asymptotes of sqrt(x/(x^2-16))
|
asymptotes\:\sqrt{\frac{x}{x^{2}-16}}
|
extreme f(x)= 7/12 x^3+7x^2+21x+9
|
extreme\:f(x)=\frac{7}{12}x^{3}+7x^{2}+21x+9
|
R(x,y)=-5x^2-4y^2-4xy+68x+72y
|
R(x,y)=-5x^{2}-4y^{2}-4xy+68x+72y
|
f(x,y)=sqrt(9-x^2-2y^2)
|
f(x,y)=\sqrt{9-x^{2}-2y^{2}}
|
extreme y=x^2-6x+5
|
extreme\:y=x^{2}-6x+5
|
h(t)=-4.9t2+x+21
|
h(t)=-4.9t2+x+21
|
extreme y=x^2+2x-2
|
extreme\:y=x^{2}+2x-2
|
extreme f(x,y)=98y^2+x^2-x^2y
|
extreme\:f(x,y)=98y^{2}+x^{2}-x^{2}y
|
extreme f(x)=4cos(2x)-4,(0,2pi)
|
extreme\:f(x)=4\cos(2x)-4,(0,2π)
|
extreme f(x)=2x+9x^{2/9}
|
extreme\:f(x)=2x+9x^{\frac{2}{9}}
|
line m= 1/9 ,\at (-9,-8)
|
line\:m=\frac{1}{9},\at\:(-9,-8)
|
extreme f(x)=sqrt(x)ln(6x)
|
extreme\:f(x)=\sqrt{x}\ln(6x)
|
extreme f(x)=-x^3+3x^2+24x+2
|
extreme\:f(x)=-x^{3}+3x^{2}+24x+2
|
minimum 432y^{783}
|
minimum\:432y^{783}
|
extreme f(x)=2x^3-3x^3-12x+1
|
extreme\:f(x)=2x^{3}-3x^{3}-12x+1
|
extreme f(x)=4x^4-2a^2x^3
|
extreme\:f(x)=4x^{4}-2a^{2}x^{3}
|
extreme f(x)=x^4+4x^3-20x^2+1
|
extreme\:f(x)=x^{4}+4x^{3}-20x^{2}+1
|
extreme f(x)=e^{x/2}(x+y^2)
|
extreme\:f(x)=e^{\frac{x}{2}}(x+y^{2})
|
extreme f(x)=x^4-50x^2+1
|
extreme\:f(x)=x^{4}-50x^{2}+1
|
domain of (sqrt(x-2))/(x-6)
|
domain\:\frac{\sqrt{x-2}}{x-6}
|
extreme f(x)=x^4-50x^2+2
|
extreme\:f(x)=x^{4}-50x^{2}+2
|
extreme y=x^3-3x^2+5
|
extreme\:y=x^{3}-3x^{2}+5
|
extreme+x/(x^2-25)
|
extreme\:+\frac{x}{x^{2}-25}
|
f(x,y)=xy-4x-4y-x^2-y^2
|
f(x,y)=xy-4x-4y-x^{2}-y^{2}
|
extreme x^3+3xy^2-15x-12y+1
|
extreme\:x^{3}+3xy^{2}-15x-12y+1
|
y=-x+z
|
y=-x+z
|
extreme f(x)=x^2-10x-1
|
extreme\:f(x)=x^{2}-10x-1
|
extreme f(x)=x^2-10x+4
|
extreme\:f(x)=x^{2}-10x+4
|
extreme f(x,y)=x^2+xy-y^2
|
extreme\:f(x,y)=x^{2}+xy-y^{2}
|
inverse of f(x)=sin(7x)
|
inverse\:f(x)=\sin(7x)
|
extreme f(x)=-x^3-3y^2+12xy-21x+8
|
extreme\:f(x)=-x^{3}-3y^{2}+12xy-21x+8
|
extreme f(x)=(x-3)/(sqrt(x^2-9))
|
extreme\:f(x)=\frac{x-3}{\sqrt{x^{2}-9}}
|
extreme f(x)= 1/4 (x+2)(x-1)^2
|
extreme\:f(x)=\frac{1}{4}(x+2)(x-1)^{2}
|
extreme f(x)=x(ln(x))^5
|
extreme\:f(x)=x(\ln(x))^{5}
|
f(x,y)=(e^{(-x^2+y^2)}(x+y^2)+1)/2
|
f(x,y)=\frac{e^{(-x^{2}+y^{2})}(x+y^{2})+1}{2}
|
extreme f(x)=x^3-4500x^2+6*10^6x
|
extreme\:f(x)=x^{3}-4500x^{2}+6\cdot\:10^{6}x
|
f(x,y)=e^{-(x^2+y^2-6y)}
|
f(x,y)=e^{-(x^{2}+y^{2}-6y)}
|
extreme f(x)=-x^3(x-3)
|
extreme\:f(x)=-x^{3}(x-3)
|
extreme f(x)=-x^3+3x+5
|
extreme\:f(x)=-x^{3}+3x+5
|
E(a,b)=(a(a+b)^2(a-b))/(a^2-b^2)
|
E(a,b)=\frac{a(a+b)^{2}(a-b)}{a^{2}-b^{2}}
|
range of-(x+5)^2+4
|
range\:-(x+5)^{2}+4
|
extreme 3x-6cos(x),2<= x<= 0
|
extreme\:3x-6\cos(x),2\le\:x\le\:0
|
extreme f(x)=(x^2-7/3 x+13/9)e^{3x}
|
extreme\:f(x)=(x^{2}-\frac{7}{3}x+\frac{13}{9})e^{3x}
|
extreme f(x)=2x^5+2x^4-x^3+6x^2+8x+4
|
extreme\:f(x)=2x^{5}+2x^{4}-x^{3}+6x^{2}+8x+4
|
extreme f(x)=(-1)/(x-4)
|
extreme\:f(x)=\frac{-1}{x-4}
|
extreme x^3-3x^2+2x+8
|
extreme\:x^{3}-3x^{2}+2x+8
|
extreme x^3*e^{-x}
|
extreme\:x^{3}\cdot\:e^{-x}
|
extreme f(x)=2x^2-4x+y^2-4y+6
|
extreme\:f(x)=2x^{2}-4x+y^{2}-4y+6
|
extreme f(x,y)=ye^{x^2-y^2}
|
extreme\:f(x,y)=ye^{x^{2}-y^{2}}
|
extreme 1/2 (x^3-3x+7)
|
extreme\:\frac{1}{2}(x^{3}-3x+7)
|
intercepts of f(x)=(x-1)^3(x+3)^2
|
intercepts\:f(x)=(x-1)^{3}(x+3)^{2}
|
extreme f(x)=ln(x^3+3x^2+3)
|
extreme\:f(x)=\ln(x^{3}+3x^{2}+3)
|
extreme f(x)=(e^x)/(x^3)
|
extreme\:f(x)=\frac{e^{x}}{x^{3}}
|
extreme f(x)=((x^2-8))/(x-3)
|
extreme\:f(x)=\frac{(x^{2}-8)}{x-3}
|
q(x,y)=x^2-xy+5y^2
|
q(x,y)=x^{2}-xy+5y^{2}
|
f(x,y)=6-x^2-4x-y^2
|
f(x,y)=6-x^{2}-4x-y^{2}
|
extreme f(x)=x+sin(2x),-pi/2 <= x<= pi/2
|
extreme\:f(x)=x+\sin(2x),-\frac{π}{2}\le\:x\le\:\frac{π}{2}
|
minimum f(x)=5x^3-4
|
minimum\:f(x)=5x^{3}-4
|
extreme f(x)=-x-(144)/x [9.13]
|
extreme\:f(x)=-x-\frac{144}{x}[9.13]
|
extreme f(x)=-x^3+12x-24
|
extreme\:f(x)=-x^{3}+12x-24
|
parity f(x)=sin(x)
|
parity\:f(x)=\sin(x)
|
extreme f(x)=x^2-4x+16
|
extreme\:f(x)=x^{2}-4x+16
|
extreme f(x)=-x^3+12x-15
|
extreme\:f(x)=-x^{3}+12x-15
|
extreme y=-4x^3-18x^2+216x-12
|
extreme\:y=-4x^{3}-18x^{2}+216x-12
|