slope of y-4=-7(x-6)
|
slope\:y-4=-7(x-6)
|
x=6
|
x=6
|
f=3
|
f=3
|
slope of 1
|
slope\:1
|
derivative of f(x)=(x+1)^2(x-4)^3
|
derivative\:f(x)=(x+1)^{2}(x-4)^{3}
|
derivative of x^2-4x+5
|
derivative\:x^{2}-4x+5
|
derivative of f(x)=x^{2/3}
|
derivative\:f(x)=x^{\frac{2}{3}}
|
derivative of y=(x^2+3)^2
|
derivative\:y=(x^{2}+3)^{2}
|
derivative of y=tan^{-1}(x-sqrt(1+x^2))
|
derivative\:y=\tan^{-1}(x-\sqrt{1+x^{2}})
|
derivative of f(x)=x^3e^x
|
derivative\:f(x)=x^{3}e^{x}
|
tangent of f(x)=3x^2,\at x=2
|
tangent\:f(x)=3x^{2},\at\:x=2
|
tangent of f(x)=4e^{-2x}-9x+1(0,5)
|
tangent\:f(x)=4e^{-2x}-9x+1(0,5)
|
derivative of 4x-1
|
derivative\:4x-1
|
derivative of f(x)= 1/(3x^2)
|
derivative\:f(x)=\frac{1}{3x^{2}}
|
slope of y-3=5(x-2)
|
slope\:y-3=5(x-2)
|
derivative of f(x)=x+1/x
|
derivative\:f(x)=x+\frac{1}{x}
|
derivative of y=2x+5
|
derivative\:y=2x+5
|
midpoint(-17/8 ,-19/6)(25/6 , 3/2)
|
midpoint(-\frac{17}{8},-\frac{19}{6})(\frac{25}{6},\frac{3}{2})
|
polar(0,-10)
|
polar(0,-10)
|
slope of y=-2x+5
|
slope\:y=-2x+5
|
midpoint(-2,4)(6,-4)
|
midpoint(-2,4)(6,-4)
|
derivative of f(x)=ln(x)
|
derivative\:f(x)=\ln(x)
|
derivative of f(x)= 4/x ,\at x=2
|
derivative\:f(x)=\frac{4}{x},\at\:x=2
|
slope of(0,-3)(1,-2)
|
slope(0,-3)(1,-2)
|
derivative of y= 2/x
|
derivative\:y=\frac{2}{x}
|
derivative of y=(e^x)/(1-e^x)
|
derivative\:y=\frac{e^{x}}{1-e^{x}}
|
slope of 5x-y=11
|
slope\:5x-y=11
|
slope of f(x)=-2x+5
|
slope\:f(x)=-2x+5
|
derivative of x(x-4)^3
|
derivative\:x(x-4)^{3}
|
slope of x=2
|
slope\:x=2
|
derivative of y=xe^x
|
derivative\:y=xe^{x}
|
derivative of y=tan(ln(ax+b))
|
derivative\:y=\tan(\ln(ax+b))
|
slope of y=-x+2
|
slope\:y=-x+2
|
derivative of f(x)=\sqrt[3]{x^2}
|
derivative\:f(x)=\sqrt[3]{x^{2}}
|
polar(6,-6)
|
polar(6,-6)
|
polar x^2+y^2
|
polar\:x^{2}+y^{2}
|
derivative of f(x)=-6/x ,\at x=12
|
derivative\:f(x)=-\frac{6}{x},\at\:x=12
|
derivative of y=cos(2x)
|
derivative\:y=\cos(2x)
|
derivative of y= 2/(x^2)
|
derivative\:y=\frac{2}{x^{2}}
|
derivative of f(x)= 1/(x^2),\at x=2
|
derivative\:f(x)=\frac{1}{x^{2}},\at\:x=2
|
x= 1/2
|
x=\frac{1}{2}
|
midpoint(-4,3)(5,-1)
|
midpoint(-4,3)(5,-1)
|
derivative of f(x)=3x
|
derivative\:f(x)=3x
|
distance(-1,1)(4,5)
|
distance(-1,1)(4,5)
|
derivative of y=(x^3+x)sin^{-1}(x)
|
derivative\:y=(x^{3}+x)\sin^{-1}(x)
|
polar(5,0)
|
polar(5,0)
|
slope ofintercept y=2(5x+1)+3(5x+3)
|
slopeintercept\:y=2(5x+1)+3(5x+3)
|
x=10
|
x=10
|
midpoint(-2,3)(10,3)
|
midpoint(-2,3)(10,3)
|
midpoint(-7,-7)(-6,-1)
|
midpoint(-7,-7)(-6,-1)
|
derivative of f(x)= 5/x ,\at x=-1
|
derivative\:f(x)=\frac{5}{x},\at\:x=-1
|
x=ln(2)
|
x=\ln(2)
|
derivative of-e^{-x}
|
derivative\:-e^{-x}
|
polar(2,-1)
|
polar(2,-1)
|
tangent of x^3
|
tangent\:x^{3}
|
derivative of-1/x
|
derivative\:-\frac{1}{x}
|
tangent of y=x^3-2x^2+4,\at(2,4)
|
tangent\:y=x^{3}-2x^{2}+4,\at(2,4)
|
integral of e^{x^2}
|
integral\:e^{x^{2}}
|
slope of 3x+y-15=0
|
slope\:3x+y-15=0
|
tangent of f(x)=2x^2+7x-9,\at x=-3
|
tangent\:f(x)=2x^{2}+7x-9,\at\:x=-3
|
midpoint(-4,-3)(7,-5)
|
midpoint(-4,-3)(7,-5)
|
derivative of f(x)=(2x+1)^2
|
derivative\:f(x)=(2x+1)^{2}
|
polar(2,-2sqrt(3))
|
polar(2,-2\sqrt{3})
|
derivative of y=2x
|
derivative\:y=2x
|
derivative of y=sin(3x)
|
derivative\:y=\sin(3x)
|
derivative of f(x)=\sqrt[5]{x^4}
|
derivative\:f(x)=\sqrt[5]{x^{4}}
|
derivative of-sin(x)
|
derivative\:-\sin(x)
|
midpoint(-9,-4)(-1,6)
|
midpoint(-9,-4)(-1,6)
|
z=1+i
|
z=1+i
|
derivative of f(x)=-9/x ,\at x=-4
|
derivative\:f(x)=-\frac{9}{x},\at\:x=-4
|
slope of 2
|
slope\:2
|
normal of x^2+y^2-3xy+4=0,\at(2,4)
|
normal\:x^{2}+y^{2}-3xy+4=0,\at(2,4)
|
Y=3
|
Y=3
|
slope of 3x+2y-4=0
|
slope\:3x+2y-4=0
|
derivative of xe^{-2x}
|
derivative\:xe^{-2x}
|
derivative of y=sin(x)
|
derivative\:y=\sin(x)
|
slope of(1,2)(5,-1)
|
slope(1,2)(5,-1)
|
perpendicular y=-2x+5
|
perpendicular\:y=-2x+5
|
derivative of y=e^{-x}
|
derivative\:y=e^{-x}
|
distance(-2,-6)(0,5)
|
distance(-2,-6)(0,5)
|
derivative of f(x)=x^2-1;x=-1
|
derivative\:f(x)=x^{2}-1;x=-1
|
derivative of y= 2/(x^4+1)+3/x
|
derivative\:y=\frac{2}{x^{4}+1}+\frac{3}{x}
|
derivative of f(x)=ln(x-5)
|
derivative\:f(x)=\ln(x-5)
|
y/((1+y^2))integral of
|
\frac{y}{(1+y^{2})}integral
|
line(0,0),(1,1)
|
line(0,0),(1,1)
|
derivative of y=sqrt(x^2+1)
|
derivative\:y=\sqrt{x^{2}+1}
|
polar(3,-4)
|
polar(3,-4)
|
derivative of f(x)=(x^2-1)/(x^2+1)
|
derivative\:f(x)=\frac{x^{2}-1}{x^{2}+1}
|
tangent of y=(5x)/(x-3),\at(4,20)
|
tangent\:y=\frac{5x}{x-3},\at(4,20)
|
derivative of y=(x+1)/(x-1)
|
derivative\:y=\frac{x+1}{x-1}
|
f=e
|
f=e
|
integral of xe^{x^2}
|
integral\:xe^{x^{2}}
|
midpoint(-7,5)(7,3)
|
midpoint(-7,5)(7,3)
|
tangent of f(x)=x^3
|
tangent\:f(x)=x^{3}
|
derivative of 2sin(x)
|
derivative\:2\sin(x)
|
slope of y=2x-4
|
slope\:y=2x-4
|
cartesian θ= pi/3
|
cartesian\:θ=\frac{π}{3}
|
derivative of f(x)=x^2+x
|
derivative\:f(x)=x^{2}+x
|
x=-3
|
x=-3
|
tangent of y=8cos(3x)-2sin(4x)
|
tangent\:y=8\cos(3x)-2\sin(4x)
|