slope y=5
|
slope\:y=5
|
perpendicular 2/3 x-3,\at(0,-3)
|
perpendicular\:\frac{2}{3}x-3,\at(0,-3)
|
derivative 3sqrt(x)
|
derivative\:3\sqrt{x}
|
cartesian(4,-(7π)/6)
|
cartesian(4,-\frac{7π}{6})
|
slope(1,18),(-8,12)
|
slope(1,18),(-8,12)
|
θ=(3π)/4
|
θ=\frac{3π}{4}
|
derivative xy
|
derivative\:xy
|
derivative xe^{-x}
|
derivative\:xe^{-x}
|
polar(2,-2)
|
polar(2,-2)
|
line r=2
|
line\:r=2
|
derivative y=ln(3x)
|
derivative\:y=\ln(3x)
|
derivative x^2sin(x)
|
derivative\:x^{2}\sin(x)
|
polar(2sqrt(2),2sqrt(2))
|
polar(2\sqrt{2},2\sqrt{2})
|
midpoint(3,sqrt(2))(6,2)
|
midpoint(3,\sqrt{2})(6,2)
|
derivative x^3-xy+y^3=1
|
derivative\:x^{3}-xy+y^{3}=1
|
midpoint(17,-11)(-14,-16)
|
midpoint(17,-11)(-14,-16)
|
polar(1,1)
|
polar(1,1)
|
polar y=-x
|
polar\:y=-x
|
perpendicular y=3x-2,\at(3,7)
|
perpendicular\:y=3x-2,\at(3,7)
|
derivative f(x)=sec^2(x)
|
derivative\:f(x)=\sec^{2}(x)
|
derivative y=3x^3+1/4 x^2
|
derivative\:y=3x^{3}+\frac{1}{4}x^{2}
|
derivative f(x)=e^x+2e^{2x}
|
derivative\:f(x)=e^{x}+2e^{2x}
|
polar(0,-5)
|
polar(0,-5)
|
tangent f(x)=ln(x),\at x=1
|
tangent\:f(x)=\ln(x),\at\:x=1
|
tangent f(x)=x^2,\at x=3
|
tangent\:f(x)=x^{2},\at\:x=3
|
m= 1/2
|
m=\frac{1}{2}
|
derivative y=x^2ln(x)
|
derivative\:y=x^{2}\ln(x)
|
derivative f(x)=x^2
|
derivative\:f(x)=x^{2}
|
derivative f(x)=-5/(x^4)
|
derivative\:f(x)=-\frac{5}{x^{4}}
|
f(-1)=0
|
f(-1)=0
|
x=8
|
x=8
|
derivative x^2+x
|
derivative\:x^{2}+x
|
derivative y=x+2
|
derivative\:y=x+2
|
slope(5,2)(3,-1)
|
slope(5,2)(3,-1)
|
polar(4sqrt(3),4)
|
polar(4\sqrt{3},4)
|
line(-3,5)
|
line(-3,5)
|
derivative f(x)=2x^3-6x^2,\at x=-2
|
derivative\:f(x)=2x^{3}-6x^{2},\at\:x=-2
|
f(1/2)=20000000sqrt(1.4)
|
f(\frac{1}{2})=20000000\sqrt{1.4}
|
slope 7x=-4y-16
|
slope\:7x=-4y-16
|
tangent sin(x+y)=2x-2y,\at(π,π)
|
tangent\:\sin(x+y)=2x-2y,\at(π,π)
|
derivative 2cos(x)
|
derivative\:2\cos(x)
|
line(1,6),(5,8)
|
line(1,6),(5,8)
|
integral e^{-x}
|
integral\:e^{-x}
|
derivative y=csc(x)cot(x)
|
derivative\:y=\csc(x)\cot(x)
|
polar y=x^2
|
polar\:y=x^{2}
|
integral x
|
integral\:x
|
cartesian(4,(4π)/3)
|
cartesian(4,\frac{4π}{3})
|
θ=(11π)/6
|
θ=\frac{11π}{6}
|
derivative 2sqrt(x)
|
derivative\:2\sqrt{x}
|
perpendicular y=x,\at(0,0)
|
perpendicular\:y=x,\at(0,0)
|
integral 1/(x^2)
|
integral\:\frac{1}{x^{2}}
|
tangent f(x)=2x^2
|
tangent\:f(x)=2x^{2}
|
midpoint(3,7),(7,3)
|
midpoint(3,7),(7,3)
|
derivative f(x)=(ln(x))/x
|
derivative\:f(x)=\frac{\ln(x)}{x}
|
polar(-2,-2sqrt(3))
|
polar(-2,-2\sqrt{3})
|
derivative f(x)=csc(x)
|
derivative\:f(x)=\csc(x)
|
slope y= 2/3 x
|
slope\:y=\frac{2}{3}x
|
x=4
|
x=4
|
line x=-1
|
line\:x=-1
|
cartesian(3,(5π)/4)
|
cartesian(3,\frac{5π}{4})
|
line(-12,14)(3,-1)
|
line(-12,14)(3,-1)
|
normal 3x^2+2x^2y^3-1.25y^2=0,\at(0.5,1)
|
normal\:3x^{2}+2x^{2}y^{3}-1.25y^{2}=0,\at(0.5,1)
|
polar(1,-sqrt(3))
|
polar(1,-\sqrt{3})
|
polar x=3
|
polar\:x=3
|
slope 2x+2y=3
|
slope\:2x+2y=3
|
midpoint(15,-9)(-2,-18)
|
midpoint(15,-9)(-2,-18)
|
perpendicular y= 5/4 x,\at(4,5)
|
perpendicular\:y=\frac{5}{4}x,\at(4,5)
|
derivative \sqrt[3]{x^2}+sqrt(x)
|
derivative\:\sqrt[3]{x^{2}}+\sqrt{x}
|
derivative f(x)=5x^2(x+47)
|
derivative\:f(x)=5x^{2}(x+47)
|
derivative f(x)=e^{-2x}
|
derivative\:f(x)=e^{-2x}
|
cartesian(7,(5π)/6)
|
cartesian(7,\frac{5π}{6})
|
polar x=5
|
polar\:x=5
|
midpoint(-5,9)(-2,7)
|
midpoint(-5,9)(-2,7)
|
derivative y=4^x
|
derivative\:y=4^{x}
|
x=15
|
x=15
|
cartesian(3, π/2)
|
cartesian(3,\frac{π}{2})
|
midpoint(-1,5),(5,5)
|
midpoint(-1,5),(5,5)
|
slope-1/2
|
slope\:-\frac{1}{2}
|
derivative y=cos(x)
|
derivative\:y=\cos(x)
|
derivative y=csc(x)
|
derivative\:y=\csc(x)
|
f(1)=2
|
f(1)=2
|
derivative 3x^2+2x^2y^3-1.25y^2=0
|
derivative\:3x^{2}+2x^{2}y^{3}-1.25y^{2}=0
|
polar(-2sqrt(3),2)
|
polar(-2\sqrt{3},2)
|
derivative f(x)=ln(x^2+1)
|
derivative\:f(x)=\ln(x^{2}+1)
|
line 4x-y=1
|
line\:4x-y=1
|
derivative y=tan^{-1}(x)
|
derivative\:y=\tan^{-1}(x)
|
derivative f(x)=\sqrt[3]{x}
|
derivative\:f(x)=\sqrt[3]{x}
|
m
|
m
|
perpendicular y=-2x+10
|
perpendicular\:y=-2x+10
|
tangent f(x)=x^3,\at x=
|
tangent\:f(x)=x^{3},\at\:x=
|
derivative tan(x-y)= y/(1+x^2)
|
derivative\:\tan(x-y)=\frac{y}{1+x^{2}}
|
derivative x^2ln(x)
|
derivative\:x^{2}\ln(x)
|
derivative f(x)=2^x
|
derivative\:f(x)=2^{x}
|
derivative y=x^2
|
derivative\:y=x^{2}
|
derivative f(x)=x^2sin(x)
|
derivative\:f(x)=x^{2}\sin(x)
|
slope y=-5
|
slope\:y=-5
|
derivative xcos(x)
|
derivative\:x\cos(x)
|
x=2
|
x=2
|
derivative f(x)=2x^2
|
derivative\:f(x)=2x^{2}
|
polar(-3sqrt(3),3)
|
polar(-3\sqrt{3},3)
|