z=-3-3i
|
z=-3-3i
|
tangent of y=x^2+1
|
tangent\:y=x^{2}+1
|
derivative of f(x)=-2x+2
|
derivative\:f(x)=-2x+2
|
derivative of ln(3)x^2
|
derivative\:\ln(3)x^{2}
|
slope of x=-4
|
slope\:x=-4
|
derivative of f(x)=(12)/x ,\at x=2
|
derivative\:f(x)=\frac{12}{x},\at\:x=2
|
midpoint(-5,13)(6,4)
|
midpoint(-5,13)(6,4)
|
tangent of x^2+y^2+2y=0,\at(0,-2)
|
tangent\:x^{2}+y^{2}+2y=0,\at(0,-2)
|
tangent of f(x)=1+ln(2x-1),\at x=1
|
tangent\:f(x)=1+\ln(2x-1),\at\:x=1
|
polar x^2+y^2=25
|
polar\:x^{2}+y^{2}=25
|
polar(-sqrt(2),-sqrt(2))
|
polar(-\sqrt{2},-\sqrt{2})
|
integral of sin
|
integral\:\sin
|
polar(2sqrt(3),2)
|
polar(2\sqrt{3},2)
|
normal of y=x^2-x^3+x,\at(-2,10)
|
normal\:y=x^{2}-x^{3}+x,\at(-2,10)
|
midpoint(-2,4)(7,3)
|
midpoint(-2,4)(7,3)
|
integral of e^{2x}
|
integral\:e^{2x}
|
derivative of f(x)=-7/x ,\at x=-3
|
derivative\:f(x)=-\frac{7}{x},\at\:x=-3
|
derivative of f(x)=(2sin^3(x)-5x)^{5/3}
|
derivative\:f(x)=(2\sin^{3}(x)-5x)^{\frac{5}{3}}
|
midpoint(3,-5)(7,9)
|
midpoint(3,-5)(7,9)
|
derivative of 2x*e^{x^2}
|
derivative\:2x\cdot\:e^{x^{2}}
|
f(-1)=1
|
f(-1)=1
|
derivative of f(x,y)=-e^{x-y^2+xy}
|
derivative\:f(x,y)=-e^{x-y^{2}+xy}
|
midpoint(15,3)(2,-14)
|
midpoint(15,3)(2,-14)
|
derivative of f(x)=x^2-5
|
derivative\:f(x)=x^{2}-5
|
derivative of f(x)= x/(x-2)
|
derivative\:f(x)=\frac{x}{x-2}
|
derivative of 2e^{2x}
|
derivative\:2e^{2x}
|
derivative of y=x^3ln(x)
|
derivative\:y=x^{3}\ln(x)
|
derivative of y=x^x
|
derivative\:y=x^{x}
|
derivative of y=ln(2x)
|
derivative\:y=\ln(2x)
|
cartesian(2,(3pi)/2)
|
cartesian(2,\frac{3π}{2})
|
derivative of f(x)=5sqrt(x)e^{x^2-3}
|
derivative\:f(x)=5\sqrt{x}e^{x^{2}-3}
|
derivative of y=sqrt(x)
|
derivative\:y=\sqrt{x}
|
polar(5,5sqrt(3))
|
polar(5,5\sqrt{3})
|
line(0,3),(2,-3)
|
line(0,3),(2,-3)
|
slope of y=7
|
slope\:y=7
|
tangent of 2y^2-sqrt(x)=14,\at(16,3)
|
tangent\:2y^{2}-\sqrt{x}=14,\at(16,3)
|
derivative of y=ln(1/(xsqrt(x+4)))
|
derivative\:y=\ln(\frac{1}{x\sqrt{x+4}})
|
derivative of f(x)=x^3
|
derivative\:f(x)=x^{3}
|
f(0)=2
|
f(0)=2
|
polar(-4sqrt(3),-4)
|
polar(-4\sqrt{3},-4)
|
derivative of x^2e^x
|
derivative\:x^{2}e^{x}
|
integral of e^{-2x}
|
integral\:e^{-2x}
|
cartesian(4,(3pi)/2)
|
cartesian(4,\frac{3π}{2})
|
derivative of f(x)=2x^3+4x
|
derivative\:f(x)=2x^{3}+4x
|
midpoint(-1,7)(3,-3)
|
midpoint(-1,7)(3,-3)
|
derivative of-cos(x)
|
derivative\:-\cos(x)
|
derivative of f(x)=8x^2+11x,\at x=7
|
derivative\:f(x)=8x^{2}+11x,\at\:x=7
|
slope of 3x-4y=7
|
slope\:3x-4y=7
|
polar(4,-4sqrt(3))
|
polar(4,-4\sqrt{3})
|
slope of y=2x+5
|
slope\:y=2x+5
|
derivative of 3sin^2(x)
|
derivative\:3\sin^{2}(x)
|
line g(x),\quad g(x)10f(x)=x
|
line\:g(x),\quad\:g(x)10f(x)=x
|
tangent of x^3,\at(2,8)
|
tangent\:x^{3},\at(2,8)
|
polar x^2+y^2-4x=0
|
polar\:x^{2}+y^{2}-4x=0
|
f(2)=7
|
f(2)=7
|
x=0
|
x=0
|
derivative of y=ln(x)
|
derivative\:y=\ln(x)
|
slope of y=2x-1
|
slope\:y=2x-1
|
derivative of y=e^x
|
derivative\:y=e^{x}
|
derivative of f(x)=(e^x-e^{-x})/2
|
derivative\:f(x)=\frac{e^{x}-e^{-x}}{2}
|
derivative of f(x)=(4x^3)/(2x^2-5)
|
derivative\:f(x)=\frac{4x^{3}}{2x^{2}-5}
|
slope ofintercept 4x+5y=20
|
slopeintercept\:4x+5y=20
|
f=4
|
f=4
|
derivative of f(x)=sin(sqrt(x))
|
derivative\:f(x)=\sin(\sqrt{x})
|
perpendicular 4y=5x-8
|
perpendicular\:4y=5x-8
|
derivative of f(x)=1+cos(x)
|
derivative\:f(x)=1+\cos(x)
|
integral of sec^2(x)
|
integral\:\sec^{2}(x)
|
f(2)=8
|
f(2)=8
|
derivative of y=xe^{-x}
|
derivative\:y=xe^{-x}
|
derivative of f(x)= 8/x ,\at x=-1
|
derivative\:f(x)=\frac{8}{x},\at\:x=-1
|
derivative of y=10x^{4/5}
|
derivative\:y=10x^{\frac{4}{5}}
|
derivative of f(x)=3x-1
|
derivative\:f(x)=3x-1
|
midpoint(2,4)(8,4)
|
midpoint(2,4)(8,4)
|
derivative of xsin(x)
|
derivative\:x\sin(x)
|
derivative of f(x)= 1/(3x^2)+4x^3
|
derivative\:f(x)=\frac{1}{3x^{2}}+4x^{3}
|
polar(0,-2)
|
polar(0,-2)
|
derivative of f(x)=|x|
|
derivative\:f(x)=\left|x\right|
|
distance(0,-1)(3,-3)
|
distance(0,-1)(3,-3)
|
slope of 3x-2y=8
|
slope\:3x-2y=8
|
derivative of f(x)= 1/(x+3)
|
derivative\:f(x)=\frac{1}{x+3}
|
derivative of y=e^{3x}
|
derivative\:y=e^{3x}
|
derivative of-x^2
|
derivative\:-x^{2}
|
slope of y=-1
|
slope\:y=-1
|
derivative of y=e^x+2e^{2x}
|
derivative\:y=e^{x}+2e^{2x}
|
polar(0,20)
|
polar(0,20)
|
derivative of f(x)=sin^2(x)
|
derivative\:f(x)=\sin^{2}(x)
|
polar(0,2)
|
polar(0,2)
|
derivative of y=x-3sin(x)
|
derivative\:y=x-3\sin(x)
|
slope of 2x+5y=10
|
slope\:2x+5y=10
|
derivative of y=(x+1)/(sqrt(x))
|
derivative\:y=\frac{x+1}{\sqrt{x}}
|
derivative of x^3e^x
|
derivative\:x^{3}e^{x}
|
derivative of f(x)= 1/(x^2+1)
|
derivative\:f(x)=\frac{1}{x^{2}+1}
|
line(1,7)(-2,3)
|
line(1,7)(-2,3)
|
derivative of (dy)/(dx)x^2-y^2=16
|
derivative\:\frac{dy}{dx}x^{2}-y^{2}=16
|
θ=(5pi)/4
|
θ=\frac{5π}{4}
|
derivative of f(x)=sqrt(3/2 x-5)
|
derivative\:f(x)=\sqrt{\frac{3}{2}x-5}
|
normal of f(x)=x^2+2,\at x=2
|
normal\:f(x)=x^{2}+2,\at\:x=2
|
T=2pisqrt(l/g)
|
T=2π\sqrt{\frac{l}{g}}
|
tangent of y=6^x,\at x=1
|
tangent\:y=6^{x},\at\:x=1
|
derivative of f(x)= x/(1+x^2)
|
derivative\:f(x)=\frac{x}{1+x^{2}}
|