derivative of f(x)=e^x
|
derivative\:f(x)=e^{x}
|
derivative of 2ln(x)
|
derivative\:2\ln(x)
|
derivative of y=x
|
derivative\:y=x
|
derivative of xln(x)
|
derivative\:x\ln(x)
|
slope of 7x+4y=10
|
slope\:7x+4y=10
|
derivative of f(x)=3x^3
|
derivative\:f(x)=3x^{3}
|
derivative of f(x)=(x-1)/(x+1)
|
derivative\:f(x)=\frac{x-1}{x+1}
|
tangent of f(x)=x^2+6x+1,\at x=-2
|
tangent\:f(x)=x^{2}+6x+1,\at\:x=-2
|
polar(-4,3)
|
polar(-4,3)
|
derivative of y=e^{e^x}
|
derivative\:y=e^{e^{x}}
|
derivative of xsqrt(x+1)
|
derivative\:x\sqrt{x+1}
|
polar y=8x^2
|
polar\:y=8x^{2}
|
midpoint(1,-6)(-3,4)
|
midpoint(1,-6)(-3,4)
|
derivative of x^3+y^3=6xy
|
derivative\:x^{3}+y^{3}=6xy
|
tangent of sqrt(x),\at(1,1)
|
tangent\:\sqrt{x},\at(1,1)
|
cartesian(2,(3pi)/4)
|
cartesian(2,\frac{3π}{4})
|
derivative of f(x)=cos^2(x)
|
derivative\:f(x)=\cos^{2}(x)
|
derivative of f(x)=e^{-x^2}
|
derivative\:f(x)=e^{-x^{2}}
|
slope of 9x-3y=18
|
slope\:9x-3y=18
|
derivative of 2xsin(x)
|
derivative\:2x\sin(x)
|
derivative of f(x)=t^2ln(e^{2t}+1)
|
derivative\:f(x)=t^{2}\ln(e^{2t}+1)
|
polar(sqrt(2),-sqrt(2))
|
polar(\sqrt{2},-\sqrt{2})
|
derivative of x^2+x+1
|
derivative\:x^{2}+x+1
|
slope of 2x+4y=7
|
slope\:2x+4y=7
|
derivative of f(x)=x^2ln(x)
|
derivative\:f(x)=x^{2}\ln(x)
|
derivative of f(x)= 1/(x-1)
|
derivative\:f(x)=\frac{1}{x-1}
|
distance(1,9),(6,3)
|
distance(1,9),(6,3)
|
derivative of y=(3x^2+5x)^2
|
derivative\:y=(3x^{2}+5x)^{2}
|
derivative of f(x)= 1/3 x^3+2x-4,\at x=3
|
derivative\:f(x)=\frac{1}{3}x^{3}+2x-4,\at\:x=3
|
cartesian r=-3
|
cartesian\:r=-3
|
cartesian(-6,(3pi)/4)
|
cartesian(-6,\frac{3π}{4})
|
midpoint(a+5,b-2)(3,-b+5)
|
midpoint(a+5,b-2)(3,-b+5)
|
slope of(5,3)(-7,2)
|
slope(5,3)(-7,2)
|
derivative of y=sqrt(1-x^2)
|
derivative\:y=\sqrt{1-x^{2}}
|
derivative of f(x)=e^2
|
derivative\:f(x)=e^{2}
|
derivative of v= 4/3 pir^3
|
derivative\:v=\frac{4}{3}πr^{3}
|
derivative of f(x)=3x+5
|
derivative\:f(x)=3x+5
|
derivative of f(x)=x^2e^{-x}
|
derivative\:f(x)=x^{2}e^{-x}
|
m^{2/3}
|
m^{\frac{2}{3}}
|
cartesian(3,(3pi)/2)
|
cartesian(3,\frac{3π}{2})
|
midpoint(-3,-5)(1,-9)
|
midpoint(-3,-5)(1,-9)
|
derivative of 4sqrt(x)
|
derivative\:4\sqrt{x}
|
derivative of 2x
|
derivative\:2x
|
derivative of f(x)=e^{-3x}
|
derivative\:f(x)=e^{-3x}
|
line(3,0)(0,-2)
|
line(3,0)(0,-2)
|
derivative of f(x)=4
|
derivative\:f(x)=4
|
polar(1,0)
|
polar(1,0)
|
slope of y= 3/4 x-7
|
slope\:y=\frac{3}{4}x-7
|
polar(-7,7)
|
polar(-7,7)
|
polar x^2+y^2=81
|
polar\:x^{2}+y^{2}=81
|
slope of f(x)=2x^2-x+2(-1,5)
|
slope\:f(x)=2x^{2}-x+2(-1,5)
|
cartesian r=2
|
cartesian\:r=2
|
integral of cos^2(x)
|
integral\:\cos^{2}(x)
|
derivative of f(x)=3x^2
|
derivative\:f(x)=3x^{2}
|
polar y=3x^2
|
polar\:y=3x^{2}
|
polar(4sqrt(2),4sqrt(2))
|
polar(4\sqrt{2},4\sqrt{2})
|
tangent of e^{-x}ln(x),(1,0)
|
tangent\:e^{-x}\ln(x),(1,0)
|
polar(-6,0)
|
polar(-6,0)
|
derivative of 3x^3
|
derivative\:3x^{3}
|
slope ofintercept 2+x=6
|
slopeintercept\:2+x=6
|
derivative of f(x)=x^8sqrt(5-3x)
|
derivative\:f(x)=x^{8}\sqrt{5-3x}
|
derivative of xsqrt(4-x^2)
|
derivative\:x\sqrt{4-x^{2}}
|
derivative of f(x)=(x^2+3x-2)^4
|
derivative\:f(x)=(x^{2}+3x-2)^{4}
|
tangent of f(x)=sin(2x)cos(x),\at x=pi
|
tangent\:f(x)=\sin(2x)\cos(x),\at\:x=π
|
derivative of f(x)=(x^2+1)^2
|
derivative\:f(x)=(x^{2}+1)^{2}
|
derivative of f(x)=pi
|
derivative\:f(x)=π
|
tangent of y=(2x-5)/(x+1),\at x=0
|
tangent\:y=\frac{2x-5}{x+1},\at\:x=0
|
x=-1
|
x=-1
|
slope of x=4
|
slope\:x=4
|
derivative of f(x)= 3/(x^2)
|
derivative\:f(x)=\frac{3}{x^{2}}
|
derivative of y=3x^2
|
derivative\:y=3x^{2}
|
midpoint(3,-8)(7,3)
|
midpoint(3,-8)(7,3)
|
derivative of f(x)=2sqrt(x)
|
derivative\:f(x)=2\sqrt{x}
|
x=sqrt(2)
|
x=\sqrt{2}
|
derivative of f(x)=sqrt(x+1)
|
derivative\:f(x)=\sqrt{x+1}
|
derivative of f(x)= 1/(x^2)
|
derivative\:f(x)=\frac{1}{x^{2}}
|
derivative of f(x)=sin(x^2)
|
derivative\:f(x)=\sin(x^{2})
|
polar(4,4sqrt(3))
|
polar(4,4\sqrt{3})
|
slope of 3x+5y-3=0
|
slope\:3x+5y-3=0
|
derivative of y=xsin(x)
|
derivative\:y=x\sin(x)
|
integral of ln(x)
|
integral\:\ln(x)
|
polar x=y
|
polar\:x=y
|
polar(0,-3)
|
polar(0,-3)
|
slope of y=x
|
slope\:y=x
|
derivative of f(x)= 1/(sqrt(x^3))
|
derivative\:f(x)=\frac{1}{\sqrt{x^{3}}}
|
derivative of f(x)=-(10)/x ,\at x=-12
|
derivative\:f(x)=-\frac{10}{x},\at\:x=-12
|
derivative of f(x)=x^2-1
|
derivative\:f(x)=x^{2}-1
|
derivative of f(x)= 1/(x^3)
|
derivative\:f(x)=\frac{1}{x^{3}}
|
polar(-3,4)
|
polar(-3,4)
|
polar(-1,1)
|
polar(-1,1)
|
derivative of f(x)=9x+5,\at x=7
|
derivative\:f(x)=9x+5,\at\:x=7
|
derivative of f(x)= 4/(x^2)
|
derivative\:f(x)=\frac{4}{x^{2}}
|
derivative of 3x^2
|
derivative\:3x^{2}
|
tangent of f(x)=sqrt(x),\at x=4
|
tangent\:f(x)=\sqrt{x},\at\:x=4
|
derivative of ln(2x-1)-ln(x-1)
|
derivative\:\ln(2x-1)-\ln(x-1)
|
derivative of f(x)=sin(2x)
|
derivative\:f(x)=\sin(2x)
|
line y=3x+5
|
line\:y=3x+5
|
normal of (x^2)/(x-1),\at(0,0)
|
normal\:\frac{x^{2}}{x-1},\at(0,0)
|
derivative of f(x)=(x^2-3x)ln(x^2-3x)
|
derivative\:f(x)=(x^{2}-3x)\ln(x^{2}-3x)
|
cartesian(6,(5pi)/4)
|
cartesian(6,\frac{5π}{4})
|