derivative of-x/2
|
derivative\:-\frac{x}{2}
|
polar(5,-5)
|
polar(5,-5)
|
derivative of f(x)=(x^2-1)^2
|
derivative\:f(x)=(x^{2}-1)^{2}
|
polar(3sqrt(3),3)
|
polar(3\sqrt{3},3)
|
midpoint(1,2)(1,-5)
|
midpoint(1,2)(1,-5)
|
cartesian(-4,pi)
|
cartesian(-4,π)
|
derivative of 4x^3
|
derivative\:4x^{3}
|
midpoint(-4,2)(8,5)
|
midpoint(-4,2)(8,5)
|
cartesian(2,(11pi)/6)
|
cartesian(2,\frac{11π}{6})
|
slope of 5y+2x=12
|
slope\:5y+2x=12
|
derivative of x^2cos(x)
|
derivative\:x^{2}\cos(x)
|
cartesian(4,0)
|
cartesian(4,0)
|
derivative of f(x)=2xsin(3x)
|
derivative\:f(x)=2x\sin(3x)
|
derivative of y=(2x+1)/(2x-1)
|
derivative\:y=\frac{2x+1}{2x-1}
|
slope of 3x-45-15y=0
|
slope\:3x-45-15y=0
|
derivative of y=(x^2+4x+3)/(sqrt(x))
|
derivative\:y=\frac{x^{2}+4x+3}{\sqrt{x}}
|
derivative of f(x)=(1-sec(x))/(tan(x))
|
derivative\:f(x)=\frac{1-\sec(x)}{\tan(x)}
|
x=-2
|
x=-2
|
perpendicular y=2x-5
|
perpendicular\:y=2x-5
|
derivative of f(x)=xe^{-x^2}
|
derivative\:f(x)=xe^{-x^{2}}
|
derivative of y=tan(x)
|
derivative\:y=\tan(x)
|
polar(-sqrt(3),1)
|
polar(-\sqrt{3},1)
|
midpoint(-6,-3)(2,7)
|
midpoint(-6,-3)(2,7)
|
slope of y+3=-4(x+7)
|
slope\:y+3=-4(x+7)
|
derivative of g(x)=((3x-2))/((x^2+2))
|
derivative\:g(x)=\frac{(3x-2)}{(x^{2}+2)}
|
line(4,2)(-3,1)
|
line(4,2)(-3,1)
|
cartesian(6,-(2pi)/3)
|
cartesian(6,-\frac{2π}{3})
|
derivative of x^2+1
|
derivative\:x^{2}+1
|
derivative of x-3
|
derivative\:x-3
|
derivative of y=x^{ln(x)}
|
derivative\:y=x^{\ln(x)}
|
polar(-6,6)
|
polar(-6,6)
|
derivative of f(x)=e^{1/x}
|
derivative\:f(x)=e^{\frac{1}{x}}
|
midpoint(7,-12)(-5,-15)
|
midpoint(7,-12)(-5,-15)
|
cartesian(-3,-pi/6)
|
cartesian(-3,-\frac{π}{6})
|
tangent of f(x)=-3x^2-6x,\at x=-1
|
tangent\:f(x)=-3x^{2}-6x,\at\:x=-1
|
x=-5
|
x=-5
|
midpoint(-2,-7)(7,4)
|
midpoint(-2,-7)(7,4)
|
midpoint(3,17)(-14,-8)
|
midpoint(3,17)(-14,-8)
|
line θ=(4pi)/3
|
line\:θ=\frac{4π}{3}
|
line(3, 1/4)(3/2 ,7)
|
line(3,\frac{1}{4})(\frac{3}{2},7)
|
derivative of y=ln(sqrt(x))
|
derivative\:y=\ln(\sqrt{x})
|
derivative of y=ln(x^2)
|
derivative\:y=\ln(x^{2})
|
derivative of f(x)=sqrt(x+9)
|
derivative\:f(x)=\sqrt{x+9}
|
derivative of y=x^3
|
derivative\:y=x^{3}
|
polar(-(9sqrt(3))/2 , 9/2)
|
polar(-\frac{9\sqrt{3}}{2},\frac{9}{2})
|
derivative of xsqrt(1-x^2)
|
derivative\:x\sqrt{1-x^{2}}
|
polar(-4,4sqrt(3))
|
polar(-4,4\sqrt{3})
|
slope of y=2x+1
|
slope\:y=2x+1
|
midpoint(3.2,2.5)(1.6,-4.5)
|
midpoint(3.2,2.5)(1.6,-4.5)
|
derivative of y=x^{sin(x)}
|
derivative\:y=x^{\sin(x)}
|
polar(2,2sqrt(3))
|
polar(2,2\sqrt{3})
|
derivative of f(x)=x^3-x-2
|
derivative\:f(x)=x^{3}-x-2
|
parallel 5x-y=4,\at(2,0)
|
parallel\:5x-y=4,\at(2,0)
|
midpoint(-1,4)(3,2)
|
midpoint(-1,4)(3,2)
|
midpoint(-7/3 , 3/4)(5/3 ,-9/4)
|
midpoint(-\frac{7}{3},\frac{3}{4})(\frac{5}{3},-\frac{9}{4})
|
r=4
|
r=4
|
derivative of 2e^x
|
derivative\:2e^{x}
|
derivative of x^3ln(x)
|
derivative\:x^{3}\ln(x)
|
cartesian(-4,-pi/3)
|
cartesian(-4,-\frac{π}{3})
|
derivative of y= 1/(x^2)
|
derivative\:y=\frac{1}{x^{2}}
|
slope of 12x+6y=18
|
slope\:12x+6y=18
|
slope of y=3x-4
|
slope\:y=3x-4
|
derivative of-x
|
derivative\:-x
|
slope of ln(x+1)+3
|
slope\:\ln(x+1)+3
|
θ= pi/3
|
θ=\frac{π}{3}
|
slope of y=3x+4
|
slope\:y=3x+4
|
midpoint(-5,-4)(5,-3)
|
midpoint(-5,-4)(5,-3)
|
derivative of y=(2x)/(1-x^2)
|
derivative\:y=\frac{2x}{1-x^{2}}
|
distance(7,-1)(-8,-9)
|
distance(7,-1)(-8,-9)
|
derivative of 1/8 x^{2/3}(9x^2-8x-16)
|
derivative\:\frac{1}{8}x^{\frac{2}{3}}(9x^{2}-8x-16)
|
derivative of-cos
|
derivative\:-\cos
|
derivative of-1/(x^2)
|
derivative\:-\frac{1}{x^{2}}
|
derivative of f(x)=sqrt(x^2+1)
|
derivative\:f(x)=\sqrt{x^{2}+1}
|
derivative of x^2-24x-12
|
derivative\:x^{2}-24x-12
|
derivative of f(x)=x^2+3x
|
derivative\:f(x)=x^{2}+3x
|
derivative of f(x)=(x+1)/(x-1)
|
derivative\:f(x)=\frac{x+1}{x-1}
|
integral of e^x
|
integral\:e^{x}
|
slope of y=3x+2
|
slope\:y=3x+2
|
derivative of y=x^2-5x
|
derivative\:y=x^{2}-5x
|
slope of 3x+4y=8
|
slope\:3x+4y=8
|
slope of(-5,2),(4,-7)
|
slope(-5,2),(4,-7)
|
polar(3,3sqrt(3))
|
polar(3,3\sqrt{3})
|
derivative of f(x)=2
|
derivative\:f(x)=2
|
derivative of y=xln(x)
|
derivative\:y=x\ln(x)
|
midpoint(2,-6)(-8,5)
|
midpoint(2,-6)(-8,5)
|
slope ofintercept 5x-6y=7
|
slopeintercept\:5x-6y=7
|
slope ofintercept 2x+3y=6
|
slopeintercept\:2x+3y=6
|
x=5
|
x=5
|
f(3)=2
|
f(3)=2
|
slope of-2
|
slope\:-2
|
slope of x=4.2
|
slope\:x=4.2
|
θ=(5pi)/6
|
θ=\frac{5π}{6}
|
tangent of 3arcsin(x),(1/2 , pi/2)
|
tangent\:3\arcsin(x),(\frac{1}{2},\frac{π}{2})
|
slope of y=6x+3
|
slope\:y=6x+3
|
derivative of y=2x+1
|
derivative\:y=2x+1
|
derivative of y=x^3e^x
|
derivative\:y=x^{3}e^{x}
|
slope of 3x+4y=12
|
slope\:3x+4y=12
|
derivative of f(x)=sin(ln(x))
|
derivative\:f(x)=\sin(\ln(x))
|
polar(-3,3sqrt(3))
|
polar(-3,3\sqrt{3})
|
midpoint(-1,8)(7,3)
|
midpoint(-1,8)(7,3)
|