distance(4,0)(-3,4)
|
distance(4,0)(-3,4)
|
integral of sin(2x)
|
integral\:\sin(2x)
|
polar(4,-4)
|
polar(4,-4)
|
derivative of f(x)=tan^2(x)
|
derivative\:f(x)=\tan^{2}(x)
|
polar(-9,9)
|
polar(-9,9)
|
tangent of f(x)=sqrt(x),\at(1,1)
|
tangent\:f(x)=\sqrt{x},\at(1,1)
|
slope of 5(y+2)=4(x-3)
|
slope\:5(y+2)=4(x-3)
|
distance(1+sqrt(24),-3)(1,-2)
|
distance(1+\sqrt{24},-3)(1,-2)
|
z=4-2i
|
z=4-2i
|
cartesian(4, pi/6)
|
cartesian(4,\frac{π}{6})
|
midpoint(-2,3)(6,5)
|
midpoint(-2,3)(6,5)
|
normal of sqrt(1-tanh(5x)),\at x=0
|
normal\:\sqrt{1-\tanh(5x)},\at\:x=0
|
line(20,10)(2,5)
|
line(20,10)(2,5)
|
polar(3,-3)
|
polar(3,-3)
|
derivative of f(x)=sqrt(5x^6-12)
|
derivative\:f(x)=\sqrt{5x^{6}-12}
|
derivative of y=e^{2x}
|
derivative\:y=e^{2x}
|
derivative of f(x)=3x+2
|
derivative\:f(x)=3x+2
|
integral of 1/(sqrt(x))
|
integral\:\frac{1}{\sqrt{x}}
|
f=sin(1)
|
f=\sin(1)
|
polar(sqrt(3),1)
|
polar(\sqrt{3},1)
|
f=0
|
f=0
|
slope of 3/4 x^4-4/3 x^3+5/2
|
slope\:\frac{3}{4}x^{4}-\frac{4}{3}x^{3}+\frac{5}{2}
|
derivative of y=sqrt(4-x^2)
|
derivative\:y=\sqrt{4-x^{2}}
|
line(-2,0)(0,2)
|
line(-2,0)(0,2)
|
f=1
|
f=1
|
polar(1,3)
|
polar(1,3)
|
derivative of-6/(x^4)
|
derivative\:-\frac{6}{x^{4}}
|
derivative of(x+1)^2(x-4)^3
|
derivative(x+1)^{2}(x-4)^{3}
|
distance(-2,3)(4,-1)
|
distance(-2,3)(4,-1)
|
midpoint(-1,-1)(1,2)
|
midpoint(-1,-1)(1,2)
|
derivative of f(x)=cos(80)
|
derivative\:f(x)=\cos(80)
|
tangent of f(x)=sqrt(x^2+18x+86)
|
tangent\:f(x)=\sqrt{x^{2}+18x+86}
|
f=-2
|
f=-2
|
derivative of f(x)=-4x^3-cos(x)+2x
|
derivative\:f(x)=-4x^{3}-\cos(x)+2x
|
slope of y= 4/5 x-3
|
slope\:y=\frac{4}{5}x-3
|
tangent of y=x^3
|
tangent\:y=x^{3}
|
derivative of e^xsin(x)
|
derivative\:e^{x}\sin(x)
|
cartesian(-4,(3pi)/4)
|
cartesian(-4,\frac{3π}{4})
|
derivative of f(x)= 1/(sqrt(x))
|
derivative\:f(x)=\frac{1}{\sqrt{x}}
|
slope of y=-1/2 x+3
|
slope\:y=-\frac{1}{2}x+3
|
slope of y=5x-1
|
slope\:y=5x-1
|
tangent of f(x)=ln(x)log_{2}(x),\at x=2
|
tangent\:f(x)=\ln(x)\log_{2}(x),\at\:x=2
|
tangent of f(x)= 1/(x^2)
|
tangent\:f(x)=\frac{1}{x^{2}}
|
derivative of f(x)=x^4
|
derivative\:f(x)=x^{4}
|
derivative of x^{11}arccot(x)
|
derivative\:x^{11}\arccot(x)
|
derivative of 4e^x
|
derivative\:4e^{x}
|
derivative of e^{3x}cos(2x)
|
derivative\:e^{3x}\cos(2x)
|
midpoint(2,-14)(-3,0)
|
midpoint(2,-14)(-3,0)
|
slope of y=3x+5
|
slope\:y=3x+5
|
midpoint(2,4)(2,-7)
|
midpoint(2,4)(2,-7)
|
slope of 2x+3y=6
|
slope\:2x+3y=6
|
midpoint(3,5)(2,2)
|
midpoint(3,5)(2,2)
|
perpendicular y=2x+3
|
perpendicular\:y=2x+3
|
midpoint(-4,4)(5,-1)
|
midpoint(-4,4)(5,-1)
|
slope ofintercept 3x-2y=-16
|
slopeintercept\:3x-2y=-16
|
distance(8,0)(4,-4)
|
distance(8,0)(4,-4)
|
derivative of xe^x
|
derivative\:xe^{x}
|
derivative of f(x)=x^2+1
|
derivative\:f(x)=x^{2}+1
|
derivative of y=ln(ln(x^{32}))
|
derivative\:y=\ln(\ln(x^{32}))
|
slope ofintercept 4x-3y=9
|
slopeintercept\:4x-3y=9
|
tangent of y=x^2-3x-10,\at x=5.5
|
tangent\:y=x^{2}-3x-10,\at\:x=5.5
|
line(-1,)(,0)(,4)
|
line(-1,)(,0)(,4)
|
derivative of y=e^{x^2}
|
derivative\:y=e^{x^{2}}
|
derivative of f(x)=-9/x ,\at x=6
|
derivative\:f(x)=-\frac{9}{x},\at\:x=6
|
midpoint(10,6),(-4,8)
|
midpoint(10,6),(-4,8)
|
polar(-3,-3sqrt(3))
|
polar(-3,-3\sqrt{3})
|
derivative of f(x)=sqrt(x)
|
derivative\:f(x)=\sqrt{x}
|
derivative of y= 1/x
|
derivative\:y=\frac{1}{x}
|
slope of(2,3)(4,9)
|
slope(2,3)(4,9)
|
polar x^2+y^2=16
|
polar\:x^{2}+y^{2}=16
|
derivative of 5x
|
derivative\:5x
|
slope ofintercept 3x+4y=12
|
slopeintercept\:3x+4y=12
|
perpendicular y=-2x+3
|
perpendicular\:y=-2x+3
|
slope of 8x+2y=6
|
slope\:8x+2y=6
|
tangent of f(x)= x/(x-1),\at x=0
|
tangent\:f(x)=\frac{x}{x-1},\at\:x=0
|
midpoint(-12,-7)(-8,-4)
|
midpoint(-12,-7)(-8,-4)
|
integral of arctan(x)
|
integral\:\arctan(x)
|
line(-2,3)(5,8)
|
line(-2,3)(5,8)
|
slope of x=-3
|
slope\:x=-3
|
midpoint(15,-3)(5,12)
|
midpoint(15,-3)(5,12)
|
derivative of f(x)=x^2-2x
|
derivative\:f(x)=x^{2}-2x
|
derivative of e^x+2e^{2x}
|
derivative\:e^{x}+2e^{2x}
|
midpoint(-6,8)(6,-7)
|
midpoint(-6,8)(6,-7)
|
T=2pisqrt(L/g)
|
T=2π\sqrt{\frac{L}{g}}
|
slope of y=6
|
slope\:y=6
|
polar(4,0)
|
polar(4,0)
|
polar(-5,5)
|
polar(-5,5)
|
f=5
|
f=5
|
derivative of y= x/(x^2+1)
|
derivative\:y=\frac{x}{x^{2}+1}
|
slope of y=5
|
slope\:y=5
|
perpendicular 2/3 x-3,\at(0,-3)
|
perpendicular\:\frac{2}{3}x-3,\at(0,-3)
|
derivative of 3sqrt(x)
|
derivative\:3\sqrt{x}
|
cartesian(4,-(7pi)/6)
|
cartesian(4,-\frac{7π}{6})
|
slope of(1,18),(-8,12)
|
slope(1,18),(-8,12)
|
θ=(3pi)/4
|
θ=\frac{3π}{4}
|
derivative of xy
|
derivative\:xy
|
derivative of xe^{-x}
|
derivative\:xe^{-x}
|
polar(2,-2)
|
polar(2,-2)
|
line r=2
|
line\:r=2
|
derivative of y=ln(3x)
|
derivative\:y=\ln(3x)
|