extreme f(x)=x^3+2x^2-7x,0<= x<= 2
|
extreme\:f(x)=x^{3}+2x^{2}-7x,0\le\:x\le\:2
|
extreme f(x)=2x^3-21x^2+72x-72.5
|
extreme\:f(x)=2x^{3}-21x^{2}+72x-72.5
|
f(x,y)=(x+1)^2+x^2y^2
|
f(x,y)=(x+1)^{2}+x^{2}y^{2}
|
extreme f(x,y)=5x^2+5y^2+3
|
extreme\:f(x,y)=5x^{2}+5y^{2}+3
|
asymptotes f(x)=(2^2-7x-4)/(x^2+x-2)
|
asymptotes\:f(x)=\frac{2^{2}-7x-4}{x^{2}+x-2}
|
extreme f(x)=(x-2)/(x+2)
|
extreme\:f(x)=\frac{x-2}{x+2}
|
extreme x+(25)/x
|
extreme\:x+\frac{25}{x}
|
extreme f(x)=2x^3-3x+10
|
extreme\:f(x)=2x^{3}-3x+10
|
extreme y=x^2+2x-3
|
extreme\:y=x^{2}+2x-3
|
extreme e^x(2x^2+x-8)
|
extreme\:e^{x}(2x^{2}+x-8)
|
extreme f(x)=2x^3+18x^2+54x+50
|
extreme\:f(x)=2x^{3}+18x^{2}+54x+50
|
extreme f(x)=6x^2-2x-4
|
extreme\:f(x)=6x^{2}-2x-4
|
extreme f(x,y)=xy+9/x+3/y
|
extreme\:f(x,y)=xy+\frac{9}{x}+\frac{3}{y}
|
extreme f(x)= 1/2 (e^x+e^{-x})
|
extreme\:f(x)=\frac{1}{2}(e^{x}+e^{-x})
|
extreme f(x)=2x^2-4x^4
|
extreme\:f(x)=2x^{2}-4x^{4}
|
inverse f(x)=(1+5x)/(6-6x)
|
inverse\:f(x)=\frac{1+5x}{6-6x}
|
extreme points Q=3x^2+2y^2x+y=5
|
extreme\:points\:Q=3x^{2}+2y^{2}x+y=5
|
extreme x^3+6x^2-63x+10
|
extreme\:x^{3}+6x^{2}-63x+10
|
extreme f(x,y)=x^2+y^2+10x-10y+5
|
extreme\:f(x,y)=x^{2}+y^{2}+10x-10y+5
|
extreme f(x)=2xy-x^3-y^2
|
extreme\:f(x)=2xy-x^{3}-y^{2}
|
extreme f(x)=x-sin(2x),(-1,3)
|
extreme\:f(x)=x-\sin(2x),(-1,3)
|
extreme f(x)= 3/(x^2-4x-5)
|
extreme\:f(x)=\frac{3}{x^{2}-4x-5}
|
extreme x^3+27x
|
extreme\:x^{3}+27x
|
extreme f(x)=x^2+10x-21
|
extreme\:f(x)=x^{2}+10x-21
|
extreme 1+1/x-1/(x^2)
|
extreme\:1+\frac{1}{x}-\frac{1}{x^{2}}
|
extreme x^2+4x+3
|
extreme\:x^{2}+4x+3
|
extreme f(x)=-x^2+8x-7
|
extreme\:f(x)=-x^{2}+8x-7
|
domain (sqrt(25-(t^2+9)))
|
domain\:(\sqrt{25-(t^{2}+9)})
|
extreme f(x,y)=-7y^2-3x^2+15y+9x
|
extreme\:f(x,y)=-7y^{2}-3x^{2}+15y+9x
|
f(x,y)=(xy+x-y+2)/(x^2y+1)
|
f(x,y)=\frac{xy+x-y+2}{x^{2}y+1}
|
f(x,y)=x^{10}-y^{10}-10x+10y-1
|
f(x,y)=x^{10}-y^{10}-10x+10y-1
|
extreme y=x^3-3x^2+4
|
extreme\:y=x^{3}-3x^{2}+4
|
extreme f(x)=1-2x^2
|
extreme\:f(x)=1-2x^{2}
|
extreme f(x,y)=2x^4-2xy+y^2-2
|
extreme\:f(x,y)=2x^{4}-2xy+y^{2}-2
|
extreme f(x)=1-x^3
|
extreme\:f(x)=1-x^{3}
|
extreme f(x)=-sqrt(5-x^2),-sqrt(5)<= x<= 0
|
extreme\:f(x)=-\sqrt{5-x^{2}},-\sqrt{5}\le\:x\le\:0
|
extreme sqrt(-14-x)
|
extreme\:\sqrt{-14-x}
|
f(x,y)=3xy-x^3-y^3
|
f(x,y)=3xy-x^{3}-y^{3}
|
intercepts f(x)=-x(x+2)(x-4)
|
intercepts\:f(x)=-x(x+2)(x-4)
|
f(x,y)=x^2+y^2-6x+8y+35
|
f(x,y)=x^{2}+y^{2}-6x+8y+35
|
extreme f(x)= 1/3 x^3-15x^2+78.2x+3630
|
extreme\:f(x)=\frac{1}{3}x^{3}-15x^{2}+78.2x+3630
|
extreme x^3+3x^2-9x+7
|
extreme\:x^{3}+3x^{2}-9x+7
|
f(x)=100-x/(100)-y/(400)
|
f(x)=100-\frac{x}{100}-\frac{y}{400}
|
f(x,y)=x^3+y^3+2x^2+4y^2+6
|
f(x,y)=x^{3}+y^{3}+2x^{2}+4y^{2}+6
|
extreme f(x)=x^3+3x^2-8
|
extreme\:f(x)=x^{3}+3x^{2}-8
|
extreme f(x)=x^3+3x^2+9
|
extreme\:f(x)=x^{3}+3x^{2}+9
|
extreme f(x)=-x^3+3x+2
|
extreme\:f(x)=-x^{3}+3x+2
|
extreme f(x)=4x^6-3x^5
|
extreme\:f(x)=4x^{6}-3x^{5}
|
f(x,y)=4-x^2+4y^2
|
f(x,y)=4-x^{2}+4y^{2}
|
asymptotes f(x)= 5/((x+1)^2)
|
asymptotes\:f(x)=\frac{5}{(x+1)^{2}}
|
extreme f(x)=x^2+(250)/x
|
extreme\:f(x)=x^{2}+\frac{250}{x}
|
extreme f(x)=3x^4+9x^3+11
|
extreme\:f(x)=3x^{4}+9x^{3}+11
|
extreme f(x)=2x^3-3x^2+1,-1<= x<= 3
|
extreme\:f(x)=2x^{3}-3x^{2}+1,-1\le\:x\le\:3
|
extreme f(x)=2x^2+5x-1
|
extreme\:f(x)=2x^{2}+5x-1
|
extreme f(x)=x^4-10x^2+9
|
extreme\:f(x)=x^{4}-10x^{2}+9
|
extreme f(x)=x^2y+y^3-48y
|
extreme\:f(x)=x^{2}y+y^{3}-48y
|
extreme x^2y-2xy+3y^3-3y
|
extreme\:x^{2}y-2xy+3y^{3}-3y
|
extreme f(x)= x/(x^2+36)
|
extreme\:f(x)=\frac{x}{x^{2}+36}
|
extreme f(x)=ln(x^3+3x^2+9)
|
extreme\:f(x)=\ln(x^{3}+3x^{2}+9)
|
extreme 1/(1+x^2)
|
extreme\:\frac{1}{1+x^{2}}
|
extreme-x^4-x^3+x^2+3x+2
|
extreme\:-x^{4}-x^{3}+x^{2}+3x+2
|
extreme x-ln(x)
|
extreme\:x-\ln(x)
|
extreme x^4+4/3 x^3-4x^2
|
extreme\:x^{4}+\frac{4}{3}x^{3}-4x^{2}
|
m(x,z)=x+z
|
m(x,z)=x+z
|
extreme f(x,y)=-9y^2-5x^2+10y+4x
|
extreme\:f(x,y)=-9y^{2}-5x^{2}+10y+4x
|
extreme x^4-4x^3+7
|
extreme\:x^{4}-4x^{3}+7
|
extreme x^4-4x^3+4
|
extreme\:x^{4}-4x^{3}+4
|
extreme f(x)=x^{1/3 (4x^2-14x-224)}
|
extreme\:f(x)=x^{\frac{1}{3}(4x^{2}-14x-224)}
|
f(x)=9-x^2-y^2
|
f(x)=9-x^{2}-y^{2}
|
extreme y=3x^2-2x+1
|
extreme\:y=3x^{2}-2x+1
|
domain f(x)=(x+1)/(5-x)
|
domain\:f(x)=\frac{x+1}{5-x}
|
extreme (x^2)/(x^2-25)
|
extreme\:\frac{x^{2}}{x^{2}-25}
|
extreme f(x)=x2^{-x}
|
extreme\:f(x)=x2^{-x}
|
f(x,y)=-150x+2x^3+6xy^2-3y^3
|
f(x,y)=-150x+2x^{3}+6xy^{2}-3y^{3}
|
extreme f(x)=x^1-(4cos(x))
|
extreme\:f(x)=x^{1}-(4\cos(x))
|
extreme f(x,y)=3(x^2+y^2)e^{y^2-x^2}
|
extreme\:f(x,y)=3(x^{2}+y^{2})e^{y^{2}-x^{2}}
|
extreme f(x)=5xln(x)
|
extreme\:f(x)=5x\ln(x)
|
f(x)=4x^2+y^2
|
f(x)=4x^{2}+y^{2}
|
extreme f(x,y)=9e^{4y-x^2-y^2}
|
extreme\:f(x,y)=9e^{4y-x^{2}-y^{2}}
|
f(x)=x-rx(1-x)
|
f(x)=x-rx(1-x)
|
f(x,y)=x^3+y^3+3x^2-6y^2-5
|
f(x,y)=x^{3}+y^{3}+3x^{2}-6y^{2}-5
|
inverse f(x)=4x+13
|
inverse\:f(x)=4x+13
|
extreme f(x)=0.01x^3-0.45x^2+2.43x+300
|
extreme\:f(x)=0.01x^{3}-0.45x^{2}+2.43x+300
|
extreme f(x)=(x-2)^3+x^2-1
|
extreme\:f(x)=(x-2)^{3}+x^{2}-1
|
extreme f(x)= 1/2 x^4-4x^3+8x^2+46
|
extreme\:f(x)=\frac{1}{2}x^{4}-4x^{3}+8x^{2}+46
|
extreme f(x)=-x^4+8x^2+5
|
extreme\:f(x)=-x^{4}+8x^{2}+5
|
extreme f(x)=3x^2-12x
|
extreme\:f(x)=3x^{2}-12x
|
extreme f(x)=2x^4+16x^3+27
|
extreme\:f(x)=2x^{4}+16x^{3}+27
|
extreme f(x,y)=x^2-xy+y^2+3
|
extreme\:f(x,y)=x^{2}-xy+y^{2}+3
|
extreme f(x,y)=2x^3+y^3+3x^2-3y-12x-4
|
extreme\:f(x,y)=2x^{3}+y^{3}+3x^{2}-3y-12x-4
|
extreme f(x)=ln(x)-2x^2
|
extreme\:f(x)=\ln(x)-2x^{2}
|
extreme f(x,y)= 1/2 xy
|
extreme\:f(x,y)=\frac{1}{2}xy
|
slope y=-1/2 x-3
|
slope\:y=-\frac{1}{2}x-3
|
extreme f(x)=sqrt(25-x^2)
|
extreme\:f(x)=\sqrt{25-x^{2}}
|
f(x,y)=-2x^3-5x^2+4xy-y^2+4y-7
|
f(x,y)=-2x^{3}-5x^{2}+4xy-y^{2}+4y-7
|
extreme f(x,y)=5x^2+5y^2+5xy-10x-5y+18
|
extreme\:f(x,y)=5x^{2}+5y^{2}+5xy-10x-5y+18
|
extreme f(x)=sqrt(3x^2+3x+1)
|
extreme\:f(x)=\sqrt{3x^{2}+3x+1}
|
extreme x^2+xy+y^2-2x-y
|
extreme\:x^{2}+xy+y^{2}-2x-y
|
extreme f(x)=x^3+y^2+2xy-4x-3y+5
|
extreme\:f(x)=x^{3}+y^{2}+2xy-4x-3y+5
|
f(x,y)=2x^2+3xy+4y^2-7x-11y
|
f(x,y)=2x^{2}+3xy+4y^{2}-7x-11y
|