extreme f(x)=-2x^3+45x^2-300x
|
extreme\:f(x)=-2x^{3}+45x^{2}-300x
|
extreme f(x)=-x^2-4x+5
|
extreme\:f(x)=-x^{2}-4x+5
|
extreme xsqrt(2-x^2)
|
extreme\:x\sqrt{2-x^{2}}
|
extreme f(x,y)=x^3+y^3+3x^2-3y^2
|
extreme\:f(x,y)=x^{3}+y^{3}+3x^{2}-3y^{2}
|
asymptotes f(x)=3^{x+5}
|
asymptotes\:f(x)=3^{x+5}
|
ln(ln(x))
|
\ln(\ln(x))
|
extreme f(x)=6x^5+33x^4-30x^3+100
|
extreme\:f(x)=6x^{5}+33x^{4}-30x^{3}+100
|
extreme f(x)=x-8/(x^2)
|
extreme\:f(x)=x-\frac{8}{x^{2}}
|
extreme 3x^5-20x^3
|
extreme\:3x^{5}-20x^{3}
|
f(s)=(4-s^2)/(2sx^2-7s-4)
|
f(s)=\frac{4-s^{2}}{2sx^{2}-7s-4}
|
L(x,y)=5x+4y-(8+2x^2+y^2-xy)
|
L(x,y)=5x+4y-(8+2x^{2}+y^{2}-xy)
|
extreme f(x)=e^{2x}(x+y^2+2y)
|
extreme\:f(x)=e^{2x}(x+y^{2}+2y)
|
extreme f(x)=-2x-5
|
extreme\:f(x)=-2x-5
|
extreme f(x)=(x^2)/(x^2+2x-15)
|
extreme\:f(x)=\frac{x^{2}}{x^{2}+2x-15}
|
extreme f(x,y)=2x^2-5xy+3y^4+5
|
extreme\:f(x,y)=2x^{2}-5xy+3y^{4}+5
|
extreme f(x,y)=x^3+3xy^2-3x^2-3y^2+4
|
extreme\:f(x,y)=x^{3}+3xy^{2}-3x^{2}-3y^{2}+4
|
inverse f(x)=2+sqrt(2x-4)
|
inverse\:f(x)=2+\sqrt{2x-4}
|
extreme f(x)=sin(π*x)
|
extreme\:f(x)=\sin(π\cdot\:x)
|
extreme-3^{x+1.5}+2.94
|
extreme\:-3^{x+1.5}+2.94
|
extreme tan(x)
|
extreme\:\tan(x)
|
extreme f(x)=(x^2-48)/(x-7)
|
extreme\:f(x)=\frac{x^{2}-48}{x-7}
|
extreme f(x)=(4x)/(x^2-25)
|
extreme\:f(x)=\frac{4x}{x^{2}-25}
|
extreme f(x)=-((x+4)^2)/((x+1)^2)
|
extreme\:f(x)=-\frac{(x+4)^{2}}{(x+1)^{2}}
|
f(x,y)=xe^{-30x^2-15y^2}
|
f(x,y)=xe^{-30x^{2}-15y^{2}}
|
extreme (-3)/(x^2-9)
|
extreme\:\frac{-3}{x^{2}-9}
|
extreme f(x)=x(x-1)^3
|
extreme\:f(x)=x(x-1)^{3}
|
2LW
|
2LW
|
inverse f(x)=-x^2+7
|
inverse\:f(x)=-x^{2}+7
|
f(x,y)=x^2+y^2-8y
|
f(x,y)=x^{2}+y^{2}-8y
|
extreme (x^3)/(2x^2-8)
|
extreme\:\frac{x^{3}}{2x^{2}-8}
|
f(x,y)=y-x+1
|
f(x,y)=y-x+1
|
extreme f(x)=3t^4+4t^3-6t^2
|
extreme\:f(x)=3t^{4}+4t^{3}-6t^{2}
|
extreme f(x)=x^2-14x+8
|
extreme\:f(x)=x^{2}-14x+8
|
f(x,y)=x^4-2x^2-y^2+3
|
f(x,y)=x^{4}-2x^{2}-y^{2}+3
|
extreme ln(sqrt(2x^2-x))
|
extreme\:\ln(\sqrt{2x^{2}-x})
|
extreme f(x)=x^2-3x-10
|
extreme\:f(x)=x^{2}-3x-10
|
extreme f(x)=x^3-x^2-9x+9
|
extreme\:f(x)=x^{3}-x^{2}-9x+9
|
f(x,y)=2x^4+y^4-x^2-2y^2
|
f(x,y)=2x^{4}+y^{4}-x^{2}-2y^{2}
|
symmetry y=-5x+1
|
symmetry\:y=-5x+1
|
extreme f(x)=6x^{2/3}+4x
|
extreme\:f(x)=6x^{\frac{2}{3}}+4x
|
extreme f(x)=10-x^4
|
extreme\:f(x)=10-x^{4}
|
f(x,y)=x^3-xy+cos(π)(x+y)
|
f(x,y)=x^{3}-xy+\cos(π)(x+y)
|
extreme f(x,y)=4x^2-xy
|
extreme\:f(x,y)=4x^{2}-xy
|
f(x,y)=x+y+(81)/(xy)
|
f(x,y)=x+y+\frac{81}{xy}
|
extreme f(x)=2(y+1)^2+y^2-2y-2
|
extreme\:f(x)=2(y+1)^{2}+y^{2}-2y-2
|
extreme f(x)=xe^{x/2},-3<= x<= 1
|
extreme\:f(x)=xe^{\frac{x}{2}},-3\le\:x\le\:1
|
extreme x+y-xy
|
extreme\:x+y-xy
|
p(x)=3x^4+2x^3+5x^2+ax-2
|
p(x)=3x^{4}+2x^{3}+5x^{2}+ax-2
|
extreme f(x)=x^2-5x+2
|
extreme\:f(x)=x^{2}-5x+2
|
intercepts f(x)=y=x^2+6
|
intercepts\:f(x)=y=x^{2}+6
|
extreme f(x)=(x^2)/9+11+6/x
|
extreme\:f(x)=\frac{x^{2}}{9}+11+\frac{6}{x}
|
extreme f(x)=-12x-6
|
extreme\:f(x)=-12x-6
|
f(x,y)=(x^2-5y^2)e^x
|
f(x,y)=(x^{2}-5y^{2})e^{x}
|
extreme f(x)=(x^2)/(x^2-16)
|
extreme\:f(x)=\frac{x^{2}}{x^{2}-16}
|
f(x,y)=x^3+3x^2y-3xy-3x
|
f(x,y)=x^{3}+3x^{2}y-3xy-3x
|
f(x,y)=x^3+y^2-2xy+7x-8y+2
|
f(x,y)=x^{3}+y^{2}-2xy+7x-8y+2
|
extreme f(x)=(x^2+11)(9-x^2)
|
extreme\:f(x)=(x^{2}+11)(9-x^{2})
|
4LW
|
4LW
|
f(x,y)=2+2x+2y-x^2-y^2
|
f(x,y)=2+2x+2y-x^{2}-y^{2}
|
extreme f(x)= 1/(sqrt(2π))e^{-(x^2)/2}
|
extreme\:f(x)=\frac{1}{\sqrt{2π}}e^{-\frac{x^{2}}{2}}
|
domain f(x)=sqrt(1-|x|)
|
domain\:f(x)=\sqrt{1-|x|}
|
extreme f(x)=-x^4+24x^2
|
extreme\:f(x)=-x^{4}+24x^{2}
|
extreme f(x)=3x^3e^{-x}
|
extreme\:f(x)=3x^{3}e^{-x}
|
extreme y=100+1/2 x+(1800)/x
|
extreme\:y=100+\frac{1}{2}x+\frac{1800}{x}
|
extreme f(x)=x^3-15x
|
extreme\:f(x)=x^{3}-15x
|
extreme f(x)=x^3-3x,-1<= x<= 2
|
extreme\:f(x)=x^{3}-3x,-1\le\:x\le\:2
|
Q(r,w)=4k^{3/2}(r/w)
|
Q(r,w)=4k^{\frac{3}{2}}(\frac{r}{w})
|
extreme f(x)=x+10sqrt(1-x),-2<= x<= 5
|
extreme\:f(x)=x+10\sqrt{1-x},-2\le\:x\le\:5
|
extreme f(x)=2x^3+x^2-11x
|
extreme\:f(x)=2x^{3}+x^{2}-11x
|
extreme x^4-4x^2
|
extreme\:x^{4}-4x^{2}
|
extreme y=x^5
|
extreme\:y=x^{5}
|
perpendicular y= 3/2 x+6
|
perpendicular\:y=\frac{3}{2}x+6
|
f(x)=5y-5x+xy-10
|
f(x)=5y-5x+xy-10
|
extreme 2x+4sin(x)
|
extreme\:2x+4\sin(x)
|
extreme 1/(1+e^{-x)}
|
extreme\:\frac{1}{1+e^{-x}}
|
f(x,y)=x-y+2
|
f(x,y)=x-y+2
|
extreme f(x)=ln(x^2+7x+15),-4<= x<= 1
|
extreme\:f(x)=\ln(x^{2}+7x+15),-4\le\:x\le\:1
|
extreme f(x)=-3x^2+18x-3
|
extreme\:f(x)=-3x^{2}+18x-3
|
extreme f(x)=x^3-x,0<= x<= 1
|
extreme\:f(x)=x^{3}-x,0\le\:x\le\:1
|
extreme f(x)=-x^2+4x+3
|
extreme\:f(x)=-x^{2}+4x+3
|
extreme f(x)=-x^2+4x+2
|
extreme\:f(x)=-x^{2}+4x+2
|
extreme f(x)=-x^2+4x-3
|
extreme\:f(x)=-x^{2}+4x-3
|
midpoint (2,5)(2,1)
|
midpoint\:(2,5)(2,1)
|
minimum f(x)=x^3-3x^2+1
|
minimum\:f(x)=x^{3}-3x^{2}+1
|
extreme f(x)=((-2x+10))/((x-15)^{11)}
|
extreme\:f(x)=\frac{(-2x+10)}{(x-15)^{11}}
|
extreme f(x)=(x+2)^2(x-1)^2
|
extreme\:f(x)=(x+2)^{2}(x-1)^{2}
|
f(x,y)=x^2-3y^2+7
|
f(x,y)=x^{2}-3y^{2}+7
|
extreme f(x,y)=20xy-x^3-10y^2
|
extreme\:f(x,y)=20xy-x^{3}-10y^{2}
|
a-b-1
|
a-b-1
|
extreme f(x)=x-(27x)/(x+3)
|
extreme\:f(x)=x-\frac{27x}{x+3}
|
extreme f(x)=ln(7-6x^2)
|
extreme\:f(x)=\ln(7-6x^{2})
|
f(x,y)=-4y^2-5x^3+13x^2
|
f(x,y)=-4y^{2}-5x^{3}+13x^{2}
|
extreme f(x)=x*e^{-(x^2)/8}
|
extreme\:f(x)=x\cdot\:e^{-\frac{x^{2}}{8}}
|
y=x^2-1
|
y=x^{2}-1
|
extreme f(x)=6x+5x^{-1}
|
extreme\:f(x)=6x+5x^{-1}
|
extreme f(x)=-x^4+4x^3+7
|
extreme\:f(x)=-x^{4}+4x^{3}+7
|
extreme f(x)= x/((1+x^2))
|
extreme\:f(x)=\frac{x}{(1+x^{2})}
|
extreme y=13x^4+4x^2+3
|
extreme\:y=13x^{4}+4x^{2}+3
|
extreme f(x)=(2x^2)/(x-3)
|
extreme\:f(x)=\frac{2x^{2}}{x-3}
|
extreme f(x)=(2x^2)/(x-4)
|
extreme\:f(x)=\frac{2x^{2}}{x-4}
|