extreme f(x)=sin(2x),0<= x<= 2π
|
extreme\:f(x)=\sin(2x),0\le\:x\le\:2π
|
extreme f(x)=2x^3-15x^2+36x
|
extreme\:f(x)=2x^{3}-15x^{2}+36x
|
f(x,y)=60x+30y-2x^2-3y^2
|
f(x,y)=60x+30y-2x^{2}-3y^{2}
|
f(x,y)=\sqrt[3]{xy}
|
f(x,y)=\sqrt[3]{xy}
|
extreme f(x)=-x^3+3x^2+2
|
extreme\:f(x)=-x^{3}+3x^{2}+2
|
f(x,y)=((x^2+y^2-1))/4
|
f(x,y)=\frac{(x^{2}+y^{2}-1)}{4}
|
inverse f(x)=4x-16
|
inverse\:f(x)=4x-16
|
minimum y=2x^3-33x^2+168x-8
|
minimum\:y=2x^{3}-33x^{2}+168x-8
|
extreme y=x^4-6x^2
|
extreme\:y=x^{4}-6x^{2}
|
f(x,y)=2x^2+y^2-xy
|
f(x,y)=2x^{2}+y^{2}-xy
|
extreme f(x)=((x^2+1))/x
|
extreme\:f(x)=\frac{(x^{2}+1)}{x}
|
extreme f(x)=x^3-9x^2+15x-7
|
extreme\:f(x)=x^{3}-9x^{2}+15x-7
|
extreme f(x)=5x^4-x^5
|
extreme\:f(x)=5x^{4}-x^{5}
|
extreme f(x)= 1/x+ln(x),0.5<= x<= 4
|
extreme\:f(x)=\frac{1}{x}+\ln(x),0.5\le\:x\le\:4
|
f(x)=(2x-3)/(sqrt(x))se
|
f(x)=\frac{2x-3}{\sqrt{x}}se
|
extreme f(x)= x/(x^2+10x+21)
|
extreme\:f(x)=\frac{x}{x^{2}+10x+21}
|
extreme y=x+sqrt(1-x)
|
extreme\:y=x+\sqrt{1-x}
|
intercepts (x+2)/(x^2+3x-10)
|
intercepts\:\frac{x+2}{x^{2}+3x-10}
|
extreme f(x)=x^2+6x+6
|
extreme\:f(x)=x^{2}+6x+6
|
extreme e^{5x}+e^{-x}
|
extreme\:e^{5x}+e^{-x}
|
extreme 2(x^2+y^2)e^{y^2-x^2}
|
extreme\:2(x^{2}+y^{2})e^{y^{2}-x^{2}}
|
extreme f(x,y)=2x^3-3x^2y-12x^2-3y^2
|
extreme\:f(x,y)=2x^{3}-3x^{2}y-12x^{2}-3y^{2}
|
f(x,y)=e^{x-y}(x^2-2y^2)
|
f(x,y)=e^{x-y}(x^{2}-2y^{2})
|
extreme f(x)=-2x^3+27x^2-84x+40
|
extreme\:f(x)=-2x^{3}+27x^{2}-84x+40
|
extreme (x^3)/(x+1)
|
extreme\:\frac{x^{3}}{x+1}
|
extreme f(x)=x^3+3*x^2-9x+27
|
extreme\:f(x)=x^{3}+3\cdot\:x^{2}-9x+27
|
extreme f(x)=(x^3)/3-4x^2+7x+8
|
extreme\:f(x)=\frac{x^{3}}{3}-4x^{2}+7x+8
|
F(x,y)=-x^3+6xy-3y^2+1
|
F(x,y)=-x^{3}+6xy-3y^{2}+1
|
inflection points x^2+2x-3
|
inflection\:points\:x^{2}+2x-3
|
f(xy)=x^3+3y^3+3x^2+3y^2+24
|
f(xy)=x^{3}+3y^{3}+3x^{2}+3y^{2}+24
|
f(x,y)=sqrt(-6+2x+6y-x^2-y^2)
|
f(x,y)=\sqrt{-6+2x+6y-x^{2}-y^{2}}
|
f(x,y)=ln(1+x^2+y^2)
|
f(x,y)=\ln(1+x^{2}+y^{2})
|
extreme f(x)=x-3x^{2/3}
|
extreme\:f(x)=x-3x^{\frac{2}{3}}
|
extreme f(x)=(x^5)/5-8/3 x^3
|
extreme\:f(x)=\frac{x^{5}}{5}-\frac{8}{3}x^{3}
|
extreme f(x)=4x^2-5x^3
|
extreme\:f(x)=4x^{2}-5x^{3}
|
extreme f(x,y)=-x^2+3x+(4y^3)/3+(y^2)/2+2
|
extreme\:f(x,y)=-x^{2}+3x+\frac{4y^{3}}{3}+\frac{y^{2}}{2}+2
|
extreme x^3-6x^2+15
|
extreme\:x^{3}-6x^{2}+15
|
extreme (4x)/(25-x^2)
|
extreme\:\frac{4x}{25-x^{2}}
|
extreme f(x)=x^{1/5}(x+6)
|
extreme\:f(x)=x^{\frac{1}{5}}(x+6)
|
parity (tan(2x))/x
|
parity\:\frac{\tan(2x)}{x}
|
extreme points f(x)=-x^2-5
|
extreme\:points\:f(x)=-x^{2}-5
|
extreme f(x)=sqrt(x^2+0.3x)-0.22x
|
extreme\:f(x)=\sqrt{x^{2}+0.3x}-0.22x
|
extreme 6x^4+8x^3
|
extreme\:6x^{4}+8x^{3}
|
y=x(3+5z)
|
y=x(3+5z)
|
f(x,y)=(x^2-1)(y+2)
|
f(x,y)=(x^{2}-1)(y+2)
|
f(x,y)= 3/4 y^2+1/24 y^3-1/32 y^4-x^2
|
f(x,y)=\frac{3}{4}y^{2}+\frac{1}{24}y^{3}-\frac{1}{32}y^{4}-x^{2}
|
f(x,y)=2*((x^2-2*x+3))/(y*(y+2))
|
f(x,y)=2\cdot\:\frac{(x^{2}-2\cdot\:x+3)}{y\cdot\:(y+2)}
|
f(x)=x^y
|
f(x)=x^{y}
|
extreme f(x)=4
|
extreme\:f(x)=4
|
extreme 2x^3-3x^2-36x+5
|
extreme\:2x^{3}-3x^{2}-36x+5
|
extreme 5^x+3
|
extreme\:5^{x}+3
|
domain f(x)=7x+5
|
domain\:f(x)=7x+5
|
extreme 6x^2-2x^3+3y^2+6xy
|
extreme\:6x^{2}-2x^{3}+3y^{2}+6xy
|
f(x,y)=2x^3y^2+4xy+6
|
f(x,y)=2x^{3}y^{2}+4xy+6
|
K(r,s)=2r-s
|
K(r,s)=2r-s
|
extreme f(x)=x^5-10x^4+25x^3
|
extreme\:f(x)=x^{5}-10x^{4}+25x^{3}
|
extreme 1+6x^2-x^3
|
extreme\:1+6x^{2}-x^{3}
|
extreme f(x)=x-3/2 x^{2/3}
|
extreme\:f(x)=x-\frac{3}{2}x^{\frac{2}{3}}
|
extreme f(x)=x^4-8x^3+5
|
extreme\:f(x)=x^{4}-8x^{3}+5
|
extreme f(x)=x^3-4x^2-3x+2
|
extreme\:f(x)=x^{3}-4x^{2}-3x+2
|
extreme f(x)=4sqrt(x)-8x
|
extreme\:f(x)=4\sqrt{x}-8x
|
extreme f(x)=(x^2-x)^{1/3}
|
extreme\:f(x)=(x^{2}-x)^{\frac{1}{3}}
|
inverse f(x)=-x/6
|
inverse\:f(x)=-\frac{x}{6}
|
f(x,y)= 1/(sqrt(4-x^2-y^2))
|
f(x,y)=\frac{1}{\sqrt{4-x^{2}-y^{2}}}
|
extreme f(x)=4+x^3+y^3-3xy
|
extreme\:f(x)=4+x^{3}+y^{3}-3xy
|
extreme 4x^2+4y^2+x^4+y^4-6x^2y^2
|
extreme\:4x^{2}+4y^{2}+x^{4}+y^{4}-6x^{2}y^{2}
|
extreme y=(x^2-6x+9)/((x-1)^2)
|
extreme\:y=\frac{x^{2}-6x+9}{(x-1)^{2}}
|
f(x,y)=x^2+4y^2+1
|
f(x,y)=x^{2}+4y^{2}+1
|
extreme f(x)=x^2+y^2-xy+x+y
|
extreme\:f(x)=x^{2}+y^{2}-xy+x+y
|
extreme f(x)= x/(1-x)
|
extreme\:f(x)=\frac{x}{1-x}
|
f(x)=2x+4y
|
f(x)=2x+4y
|
f(x)=2+4x+2x^2-xy+y^2
|
f(x)=2+4x+2x^{2}-xy+y^{2}
|
extreme f(x)=xe^{-7x^2}
|
extreme\:f(x)=xe^{-7x^{2}}
|
domain 11cos(2x)+5
|
domain\:11\cos(2x)+5
|
extreme f(x)= 1/3 x^3-1/3 x^2-2x
|
extreme\:f(x)=\frac{1}{3}x^{3}-\frac{1}{3}x^{2}-2x
|
extreme f(x)=3x^{5/3}-15x^{2/3}
|
extreme\:f(x)=3x^{\frac{5}{3}}-15x^{\frac{2}{3}}
|
f(x)=e^{ax}
|
f(x)=e^{ax}
|
extreme f(x,y)=x^3+y^3-3x-12y+20
|
extreme\:f(x,y)=x^{3}+y^{3}-3x-12y+20
|
extreme sqrt(X+3)
|
extreme\:\sqrt{X+3}
|
f(x,y)=x^2+xy+y^2-y
|
f(x,y)=x^{2}+xy+y^{2}-y
|
F(x,y)=x^3ln(y^2+1)-2y
|
F(x,y)=x^{3}\ln(y^{2}+1)-2y
|
extreme f(x)=1+6x^2-x^3
|
extreme\:f(x)=1+6x^{2}-x^{3}
|
extreme 2x+10
|
extreme\:2x+10
|
extreme f(x)=x^2+2x-5
|
extreme\:f(x)=x^{2}+2x-5
|
distance (1,2)(5,6)
|
distance\:(1,2)(5,6)
|
f(x,y)=e^{-x^2-y^2}
|
f(x,y)=e^{-x^{2}-y^{2}}
|
extreme f(x,y)=72y^2+x^2-x^2y
|
extreme\:f(x,y)=72y^{2}+x^{2}-x^{2}y
|
f(x,y)=x^2-6xy+y^3+3x+6y-2
|
f(x,y)=x^{2}-6xy+y^{3}+3x+6y-2
|
extreme f(x)=3x^{2/3}
|
extreme\:f(x)=3x^{\frac{2}{3}}
|
extreme f(x)= 1/x*ln^2(3x)
|
extreme\:f(x)=\frac{1}{x}\cdot\:\ln^{2}(3x)
|
f(x,y)=x^2-y^2+xy-x-y
|
f(x,y)=x^{2}-y^{2}+xy-x-y
|
extreme f(x,y)=2x^2+y^2+6xy+10x-6y+5
|
extreme\:f(x,y)=2x^{2}+y^{2}+6xy+10x-6y+5
|
f(x,y)=2y^3-3y^2-12y+2x^2-6x+3
|
f(x,y)=2y^{3}-3y^{2}-12y+2x^{2}-6x+3
|
extreme f(x)=2x^4-4x^2+6
|
extreme\:f(x)=2x^{4}-4x^{2}+6
|
extreme f(x)=xe^{7x^2}
|
extreme\:f(x)=xe^{7x^{2}}
|
critical points f(x)=-3x^2+12x
|
critical\:points\:f(x)=-3x^{2}+12x
|
f(x,y)=5x+3y+2
|
f(x,y)=5x+3y+2
|
extreme f(x)=sin(πx)
|
extreme\:f(x)=\sin(πx)
|
extreme f(x)=ln(5-3x^2)
|
extreme\:f(x)=\ln(5-3x^{2})
|
extreme f(x)=(x^3+3)/(2x^2-6x-4)
|
extreme\:f(x)=\frac{x^{3}+3}{2x^{2}-6x-4}
|