extreme f(x)=(x^3-2)/((x-1)^2)
|
extreme\:f(x)=\frac{x^{3}-2}{(x-1)^{2}}
|
extreme f(x)= 3/(x+4)
|
extreme\:f(x)=\frac{3}{x+4}
|
f(x,y)=((x+9)^2-1)(x^2-16)+200y^2+2
|
f(x,y)=((x+9)^{2}-1)(x^{2}-16)+200y^{2}+2
|
f(x,y)=5xy-7x^2-y^2+3x-6y+2
|
f(x,y)=5xy-7x^{2}-y^{2}+3x-6y+2
|
extreme f(x,y)=3xe^y-x^3-e^{3y}
|
extreme\:f(x,y)=3xe^{y}-x^{3}-e^{3y}
|
minimum f(x)=x^2-2x-8
|
minimum\:f(x)=x^{2}-2x-8
|
midpoint (6,-3)(10,-9)
|
midpoint\:(6,-3)(10,-9)
|
f(x,y)=14xy-x^3-7y^2
|
f(x,y)=14xy-x^{3}-7y^{2}
|
extreme f(x)=x^3-12xy+y^3
|
extreme\:f(x)=x^{3}-12xy+y^{3}
|
extreme x^2+10x+23
|
extreme\:x^{2}+10x+23
|
extreme f(x)=x*e^{-x}
|
extreme\:f(x)=x\cdot\:e^{-x}
|
f(x)=2tx
|
f(x)=2tx
|
extreme (2x^2-2)/(x^2-4)
|
extreme\:\frac{2x^{2}-2}{x^{2}-4}
|
f(x)=ln(x+y-1)
|
f(x)=\ln(x+y-1)
|
extreme f(x)=6xy-x^3-3y^2
|
extreme\:f(x)=6xy-x^{3}-3y^{2}
|
extreme f(x,y)=2x^2+xy^2-6xy+5x+2
|
extreme\:f(x,y)=2x^{2}+xy^{2}-6xy+5x+2
|
extreme 2
|
extreme\:2
|
inflection points f(x)=(x^2)/((x^2+12))
|
inflection\:points\:f(x)=\frac{x^{2}}{(x^{2}+12)}
|
extreme f(x)=xsqrt(36-x^2)
|
extreme\:f(x)=x\sqrt{36-x^{2}}
|
extreme f(x)=x^4+(4x^3)/3-4x^2
|
extreme\:f(x)=x^{4}+\frac{4x^{3}}{3}-4x^{2}
|
extreme f(x)=3y^2-2y^3-3x^2+6xy
|
extreme\:f(x)=3y^{2}-2y^{3}-3x^{2}+6xy
|
extreme f(x)=3x^3-6x^2-5x+1
|
extreme\:f(x)=3x^{3}-6x^{2}-5x+1
|
extreme-x^3+3x^2-2
|
extreme\:-x^{3}+3x^{2}-2
|
extreme f(x,y)=8x^3-24xy+y^3
|
extreme\:f(x,y)=8x^{3}-24xy+y^{3}
|
extreme f(x)=e^{x^2}
|
extreme\:f(x)=e^{x^{2}}
|
f(x,y)=3x-2y-((xy+2)^2)/x+y-2
|
f(x,y)=3x-2y-\frac{(xy+2)^{2}}{x}+y-2
|
extreme f(x)=csc(x)
|
extreme\:f(x)=\csc(x)
|
extreme f(x)=x^2(x-2)^2(x-1)^2
|
extreme\:f(x)=x^{2}(x-2)^{2}(x-1)^{2}
|
y=4-x^2
|
y=4-x^{2}
|
extreme f(x)=6x^4-8x^3-24x^2+1,-2<= x<= 3
|
extreme\:f(x)=6x^{4}-8x^{3}-24x^{2}+1,-2\le\:x\le\:3
|
extreme f(x)=x^3-12x^2+45x+8
|
extreme\:f(x)=x^{3}-12x^{2}+45x+8
|
extreme f(x)= x/(x^2-x+4)
|
extreme\:f(x)=\frac{x}{x^{2}-x+4}
|
z(b,v)=b^{2v}
|
z(b,v)=b^{2v}
|
extreme f(x)=x^2-x-1
|
extreme\:f(x)=x^{2}-x-1
|
extreme f(x)=\sqrt[3]{x+2}
|
extreme\:f(x)=\sqrt[3]{x+2}
|
extreme f(x)=2x^2-5x+3
|
extreme\:f(x)=2x^{2}-5x+3
|
minimum f(x)=x^3-12x
|
minimum\:f(x)=x^{3}-12x
|
extreme f(x)=9x^2-4
|
extreme\:f(x)=9x^{2}-4
|
extreme x^5-5x^4
|
extreme\:x^{5}-5x^{4}
|
domain f(x)= 8/(sqrt(8+t))
|
domain\:f(x)=\frac{8}{\sqrt{8+t}}
|
extreme (3x)/(x^2-25)
|
extreme\:\frac{3x}{x^{2}-25}
|
f(x)=x^2-xy
|
f(x)=x^{2}-xy
|
extreme f(x)=x^2-y^2sqrt(1-x^2-y^2)
|
extreme\:f(x)=x^{2}-y^{2}\sqrt{1-x^{2}-y^{2}}
|
extreme f(x)=-x^3+6x^2-9x+1
|
extreme\:f(x)=-x^{3}+6x^{2}-9x+1
|
f(x,y)=2x-4y+7
|
f(x,y)=2x-4y+7
|
extreme x^3-3x^2-9x
|
extreme\:x^{3}-3x^{2}-9x
|
extreme f(x,y)=xe^y
|
extreme\:f(x,y)=xe^{y}
|
extreme f(x)=x^{1/3}(x-4)
|
extreme\:f(x)=x^{\frac{1}{3}}(x-4)
|
extreme f(x)=x^3-6x^2+16
|
extreme\:f(x)=x^{3}-6x^{2}+16
|
extreme f(x,y)=4x^2y+2xy^2-12xy-5
|
extreme\:f(x,y)=4x^{2}y+2xy^{2}-12xy-5
|
domain f(x)=(\sqrt[3]{x-3})/(x^3-3)
|
domain\:f(x)=\frac{\sqrt[3]{x-3}}{x^{3}-3}
|
intercepts f(x)= 2/x
|
intercepts\:f(x)=\frac{2}{x}
|
extreme points f(x)=3x^3+45x^2+81x+40
|
extreme\:points\:f(x)=3x^{3}+45x^{2}+81x+40
|
extreme e^{2x}+e^{-x}
|
extreme\:e^{2x}+e^{-x}
|
extreme (x+5)/(x-4)
|
extreme\:\frac{x+5}{x-4}
|
extreme f(x)=2x^2+3xy+4y^2+7x+11y
|
extreme\:f(x)=2x^{2}+3xy+4y^{2}+7x+11y
|
extreme x^3-3x^2+3x
|
extreme\:x^{3}-3x^{2}+3x
|
f(x,y)=sqrt(y-x+2)
|
f(x,y)=\sqrt{y-x+2}
|
extreme f(x)=x^3-3x^2-9x+8
|
extreme\:f(x)=x^{3}-3x^{2}-9x+8
|
extreme f(x)=x^3-3x^2-9x+9
|
extreme\:f(x)=x^{3}-3x^{2}-9x+9
|
extreme f(x)=x^3-12x,-3<= x<= 3
|
extreme\:f(x)=x^{3}-12x,-3\le\:x\le\:3
|
extreme a*e^{2x}-e^{3x}
|
extreme\:a\cdot\:e^{2x}-e^{3x}
|
extreme f(x)=25x^2e^{2x}-16
|
extreme\:f(x)=25x^{2}e^{2x}-16
|
domain f(x)=-sqrt(2x-2)+4
|
domain\:f(x)=-\sqrt{2x-2}+4
|
extreme f(x)=e^{-2x^2}
|
extreme\:f(x)=e^{-2x^{2}}
|
extreme f(x)=x^2-4x-3
|
extreme\:f(x)=x^{2}-4x-3
|
extreme f(x,y)=x^2+y^2+5
|
extreme\:f(x,y)=x^{2}+y^{2}+5
|
minimum y=x^3-6x^2+9
|
minimum\:y=x^{3}-6x^{2}+9
|
extreme f(x,y)=32x^4+y^2-16xy
|
extreme\:f(x,y)=32x^{4}+y^{2}-16xy
|
extreme f(x)=x^3-6xy+y^3
|
extreme\:f(x)=x^{3}-6xy+y^{3}
|
extreme f(x)=2x^3-3x^2y-12x^2-3y^2
|
extreme\:f(x)=2x^{3}-3x^{2}y-12x^{2}-3y^{2}
|
extreme f(x)=(x^2+9)/(2x)
|
extreme\:f(x)=\frac{x^{2}+9}{2x}
|
extreme f(x)=x(x-1)^2
|
extreme\:f(x)=x(x-1)^{2}
|
extreme f(x)=x-y=10
|
extreme\:f(x)=x-y=10
|
periodicity f(x)=-6sin(3pi x+4)-2
|
periodicity\:f(x)=-6\sin(3\pi\:x+4)-2
|
w(x,y)=xy+(e^y)/(y^2+1)
|
w(x,y)=xy+\frac{e^{y}}{y^{2}+1}
|
extreme f(x)=x^8+8/x
|
extreme\:f(x)=x^{8}+\frac{8}{x}
|
f(x,y)=sqrt(9-x^2)-sqrt(4-y^2)
|
f(x,y)=\sqrt{9-x^{2}}-\sqrt{4-y^{2}}
|
extreme f(x)=xsqrt(x+9)
|
extreme\:f(x)=x\sqrt{x+9}
|
extreme f(x)=6x^{2/3}-4x
|
extreme\:f(x)=6x^{\frac{2}{3}}-4x
|
extreme f(x)=3x^5-4x^3
|
extreme\:f(x)=3x^{5}-4x^{3}
|
extreme f(x)=2x^4+2y^4-2xy
|
extreme\:f(x)=2x^{4}+2y^{4}-2xy
|
f(x,y)=4x^2+y^2-8x+6y+8
|
f(x,y)=4x^{2}+y^{2}-8x+6y+8
|
extreme f(x)=e^{x^2-9x-1},-9<= x<= 9
|
extreme\:f(x)=e^{x^{2}-9x-1},-9\le\:x\le\:9
|
extreme f(x)=5-7x-4x^2
|
extreme\:f(x)=5-7x-4x^{2}
|
domain f(x)=6x^2+6x-1
|
domain\:f(x)=6x^{2}+6x-1
|
extreme f(x)=ln(8+x^3)
|
extreme\:f(x)=\ln(8+x^{3})
|
extreme f(x)=-x^3-1
|
extreme\:f(x)=-x^{3}-1
|
extreme f(x)=-x^2+4x+6
|
extreme\:f(x)=-x^{2}+4x+6
|
f(x,y)=4xy-x^3-2y^2
|
f(x,y)=4xy-x^{3}-2y^{2}
|
L(x,y)=4+x^3+y^3-3xy
|
L(x,y)=4+x^{3}+y^{3}-3xy
|
extreme y=(2-x)^3
|
extreme\:y=(2-x)^{3}
|
extreme f(x)=4x^4+16x^3
|
extreme\:f(x)=4x^{4}+16x^{3}
|
extreme f(x,y)=x^3+3y^3+3x^2+3y^2+24
|
extreme\:f(x,y)=x^{3}+3y^{3}+3x^{2}+3y^{2}+24
|
extreme f(x)=2x+2/x
|
extreme\:f(x)=2x+\frac{2}{x}
|
extreme f(x)=((x^2-4))/(x^2+4)
|
extreme\:f(x)=\frac{(x^{2}-4)}{x^{2}+4}
|
asymptotes f(x)= 1/((x+1)^2)
|
asymptotes\:f(x)=\frac{1}{(x+1)^{2}}
|
f(x,y)=x^3-9xy+y^3
|
f(x,y)=x^{3}-9xy+y^{3}
|
extreme f(x)=(2x^2)/(x-8)
|
extreme\:f(x)=\frac{2x^{2}}{x-8}
|
extreme (x^2)/(x^2+4)
|
extreme\:\frac{x^{2}}{x^{2}+4}
|