extreme 3x^2ln(x)
|
extreme\:3x^{2}\ln(x)
|
f(x,y)=6xy-x^3-3y^2
|
f(x,y)=6xy-x^{3}-3y^{2}
|
extreme f(x)=8y^2+5x^2-10y+6x-10
|
extreme\:f(x)=8y^{2}+5x^{2}-10y+6x-10
|
extreme f(x)=2x^3-3x^2-12x-1
|
extreme\:f(x)=2x^{3}-3x^{2}-12x-1
|
f(x,y)=x^3+y^2+3/2 x^2-6x-4y+3
|
f(x,y)=x^{3}+y^{2}+\frac{3}{2}x^{2}-6x-4y+3
|
extreme f(x)=2x^3+3x^2-36x+5
|
extreme\:f(x)=2x^{3}+3x^{2}-36x+5
|
extreme points (2x-1)ln(2x-1)
|
extreme\:points\:(2x-1)\ln(2x-1)
|
extreme f(x,y)=(x^2+y^2)e^{y^2-x^2}
|
extreme\:f(x,y)=(x^{2}+y^{2})e^{y^{2}-x^{2}}
|
f(x)=sqrt(-ln(1/(x+y)))
|
f(x)=\sqrt{-\ln(\frac{1}{x+y})}
|
extreme f(x)=2+12x+3x^2-2x^3
|
extreme\:f(x)=2+12x+3x^{2}-2x^{3}
|
f(x,y)=sqrt(9-x^2-9y^2)
|
f(x,y)=\sqrt{9-x^{2}-9y^{2}}
|
extreme f(x)=x^4+2x^3-2x^2+2
|
extreme\:f(x)=x^{4}+2x^{3}-2x^{2}+2
|
extreme f(x)=5-x^2
|
extreme\:f(x)=5-x^{2}
|
extreme f(x)= 2/x
|
extreme\:f(x)=\frac{2}{x}
|
extreme x^4-5x^3
|
extreme\:x^{4}-5x^{3}
|
extreme f(x)=4x^3-3x^2-6x+3,-1<= x<= 10
|
extreme\:f(x)=4x^{3}-3x^{2}-6x+3,-1\le\:x\le\:10
|
extreme f(x)= 8/(3x^2+4)
|
extreme\:f(x)=\frac{8}{3x^{2}+4}
|
midpoint (-7,2)(9,-9)
|
midpoint\:(-7,2)(9,-9)
|
extreme f(x)=2sin(x)
|
extreme\:f(x)=2\sin(x)
|
extreme f(x)=ln(x-y)+x^2+y
|
extreme\:f(x)=\ln(x-y)+x^{2}+y
|
extreme f(x,y)=x^3-y^3-2xy+6
|
extreme\:f(x,y)=x^{3}-y^{3}-2xy+6
|
extreme sin(x)-x
|
extreme\:\sin(x)-x
|
extreme f(x)=3x^3-36x
|
extreme\:f(x)=3x^{3}-36x
|
f(x,y)=sqrt(y)+sqrt(9-x^2-y^2)
|
f(x,y)=\sqrt{y}+\sqrt{9-x^{2}-y^{2}}
|
extreme f(x)=-x^2+160x-400
|
extreme\:f(x)=-x^{2}+160x-400
|
extreme x^2-4x
|
extreme\:x^{2}-4x
|
x^y
|
x^{y}
|
extreme f(x)=xsqrt(3+x)
|
extreme\:f(x)=x\sqrt{3+x}
|
domain (sqrt(4x-11))/(x-9)
|
domain\:\frac{\sqrt{4x-11}}{x-9}
|
parity f(x)=(2x^3+3x+3)/(5x^3+4x-3)
|
parity\:f(x)=\frac{2x^{3}+3x+3}{5x^{3}+4x-3}
|
F(x,y)=x^2+x^2y+y^2+1
|
F(x,y)=x^{2}+x^{2}y+y^{2}+1
|
extreme f(x)=-(5x)/(4x^2+7)
|
extreme\:f(x)=-\frac{5x}{4x^{2}+7}
|
extreme f(x)=x^3-6x^2+9
|
extreme\:f(x)=x^{3}-6x^{2}+9
|
extreme f(x)=e^{-1.5x^2}
|
extreme\:f(x)=e^{-1.5x^{2}}
|
extreme f(x)=x^3-9x^2+24x-2
|
extreme\:f(x)=x^{3}-9x^{2}+24x-2
|
extreme f(x,y)=2x^2+3xy+4y^2+7x+11y
|
extreme\:f(x,y)=2x^{2}+3xy+4y^{2}+7x+11y
|
extreme f(x)=x^4-5x^2
|
extreme\:f(x)=x^{4}-5x^{2}
|
extreme f(x)=2x^2-8x+y^2+16y+100
|
extreme\:f(x)=2x^{2}-8x+y^{2}+16y+100
|
f(x,y)=2x^3+9xy^2+15x^2+27y^2
|
f(x,y)=2x^{3}+9xy^{2}+15x^{2}+27y^{2}
|
extreme f(x)=x^3-2x+1
|
extreme\:f(x)=x^{3}-2x+1
|
asymptotes f(x)=3x-x^3
|
asymptotes\:f(x)=3x-x^{3}
|
extreme f(x)=x^3-2x+4
|
extreme\:f(x)=x^{3}-2x+4
|
extreme f(x)=(x-3)^2
|
extreme\:f(x)=(x-3)^{2}
|
extreme f(x)=-1/3 x^3+2x^2-3x-12
|
extreme\:f(x)=-\frac{1}{3}x^{3}+2x^{2}-3x-12
|
extreme f(x)= 1/3 x^3+1/2 x^2-6x+1
|
extreme\:f(x)=\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-6x+1
|
extreme f(x)=(x^2+2x-1)/x
|
extreme\:f(x)=\frac{x^{2}+2x-1}{x}
|
extreme f(x,y)=4x^3+y^3-12x-3y
|
extreme\:f(x,y)=4x^{3}+y^{3}-12x-3y
|
extreme f(x)=\sqrt[3]{x^2-1}
|
extreme\:f(x)=\sqrt[3]{x^{2}-1}
|
extreme f(x,y)=2x^4+y^2-16xy
|
extreme\:f(x,y)=2x^{4}+y^{2}-16xy
|
extreme f(x,y)=2x^3+xy^2+5x^2+y^2+4
|
extreme\:f(x,y)=2x^{3}+xy^{2}+5x^{2}+y^{2}+4
|
extreme f(x)=\sqrt[3]{x^2-4}
|
extreme\:f(x)=\sqrt[3]{x^{2}-4}
|
domain f(x)=log_{3}(x)
|
domain\:f(x)=\log_{3}(x)
|
f(x,y)=x^3-12x+y^3+3y^2-9y
|
f(x,y)=x^{3}-12x+y^{3}+3y^{2}-9y
|
extreme f(x,y)=4x^2-2y^2+2xy
|
extreme\:f(x,y)=4x^{2}-2y^{2}+2xy
|
extreme f(x)=ae^{2x}-e^{3x}
|
extreme\:f(x)=ae^{2x}-e^{3x}
|
extreme f(x)=x^4+8x^3+18x^2+4
|
extreme\:f(x)=x^{4}+8x^{3}+18x^{2}+4
|
extreme f(x)=x^4+8x^3+18x^2-8
|
extreme\:f(x)=x^{4}+8x^{3}+18x^{2}-8
|
extreme f(x,y)=4xy-x^3-2y^2
|
extreme\:f(x,y)=4xy-x^{3}-2y^{2}
|
minimum 0.01x^3-0.5x^2+173x,(0,100)
|
minimum\:0.01x^{3}-0.5x^{2}+173x,(0,100)
|
extreme f(x,y)=y^3-3xy+6x
|
extreme\:f(x,y)=y^{3}-3xy+6x
|
extreme x^2-x-1
|
extreme\:x^{2}-x-1
|
extreme f(x)=6x^4-4x^6
|
extreme\:f(x)=6x^{4}-4x^{6}
|
domain f(x)= 1/2 (e^x-1)
|
domain\:f(x)=\frac{1}{2}(e^{x}-1)
|
extreme f(x)=-x^4+x^3+19
|
extreme\:f(x)=-x^{4}+x^{3}+19
|
extreme f(x)=(x+3)/(x-3)
|
extreme\:f(x)=\frac{x+3}{x-3}
|
extreme f(x,y)=-3x^2+5xy-2y^2+x+y
|
extreme\:f(x,y)=-3x^{2}+5xy-2y^{2}+x+y
|
f(x,y)=ye^{x^2}
|
f(x,y)=ye^{x^{2}}
|
f(x)=ln(y-x)+ln(y+x)+ln(16-y)
|
f(x)=\ln(y-x)+\ln(y+x)+\ln(16-y)
|
extreme f(x)=x^2-1/2 y^2+3x
|
extreme\:f(x)=x^{2}-\frac{1}{2}y^{2}+3x
|
extreme f(x)=(x-3)e^x
|
extreme\:f(x)=(x-3)e^{x}
|
f(x,y)=xln(x+y)
|
f(x,y)=x\ln(x+y)
|
f(x,y)=x^2+xy+y^2-7y+16
|
f(x,y)=x^{2}+xy+y^{2}-7y+16
|
extreme f(x)=x^2(x-2)^2
|
extreme\:f(x)=x^{2}(x-2)^{2}
|
inverse-3x+2
|
inverse\:-3x+2
|
extreme f(x)= 2/5 x^5-5x^4+16x^3+2
|
extreme\:f(x)=\frac{2}{5}x^{5}-5x^{4}+16x^{3}+2
|
f(x,y)=x^2+xy+y^2-19y+120
|
f(x,y)=x^{2}+xy+y^{2}-19y+120
|
extreme f(x)=x^4+8x^3
|
extreme\:f(x)=x^{4}+8x^{3}
|
f(x)=x^3-6xy+y^3
|
f(x)=x^{3}-6xy+y^{3}
|
extreme x^4-3x^3
|
extreme\:x^{4}-3x^{3}
|
extreme f(x)=6x^2-x^3
|
extreme\:f(x)=6x^{2}-x^{3}
|
extreme f(x)=3x^2-x-2
|
extreme\:f(x)=3x^{2}-x-2
|
extreme f(x)=x^7e^{-x}
|
extreme\:f(x)=x^{7}e^{-x}
|
extreme f(x)=x^3-5x^2+3x+12,-2<= x<= 4
|
extreme\:f(x)=x^{3}-5x^{2}+3x+12,-2\le\:x\le\:4
|
extreme f(x)=x-sin(2x)
|
extreme\:f(x)=x-\sin(2x)
|
domain f(x)=sqrt(16-((\sqrt{x+1))^2)}
|
domain\:f(x)=\sqrt{16-((\sqrt{x+1})^{2})}
|
extreme 110t^2e^{-1.2t}
|
extreme\:110t^{2}e^{-1.2t}
|
extreme f(x)=4x^3-3x^4
|
extreme\:f(x)=4x^{3}-3x^{4}
|
extreme f(x)=-x^3+6x^2+x-1
|
extreme\:f(x)=-x^{3}+6x^{2}+x-1
|
extreme (3x^2)/(x^2-4)
|
extreme\:\frac{3x^{2}}{x^{2}-4}
|
extreme y=(x^3)/(x^2-4)
|
extreme\:y=\frac{x^{3}}{x^{2}-4}
|
f(x)=1-e^{-kx}
|
f(x)=1-e^{-kx}
|
extreme sin^2(θ)
|
extreme\:\sin^{2}(θ)
|
extreme f(x,y)=x^2-y^2-2x+4y+6
|
extreme\:f(x,y)=x^{2}-y^{2}-2x+4y+6
|
extreme 1/(x+1)
|
extreme\:\frac{1}{x+1}
|
extreme f(x)=x^2+4x+4,-4<= x<= 0
|
extreme\:f(x)=x^{2}+4x+4,-4\le\:x\le\:0
|
inverse sqrt(16-x^2)
|
inverse\:\sqrt{16-x^{2}}
|
f(x,y)=x^2y^3-10y+15xy^2
|
f(x,y)=x^{2}y^{3}-10y+15xy^{2}
|
extreme x^2+xy+y^2+3x-3y+4
|
extreme\:x^{2}+xy+y^{2}+3x-3y+4
|
extreme f(x)= 1/3 x^3-2x^2+3x-4
|
extreme\:f(x)=\frac{1}{3}x^{3}-2x^{2}+3x-4
|
f(x,y)=3y^3+5x^2y-24x^2-24y^2-2
|
f(x,y)=3y^{3}+5x^{2}y-24x^{2}-24y^{2}-2
|