domain (x-4)/(x^3-5x^2+12x-33)
|
domain\:\frac{x-4}{x^{3}-5x^{2}+12x-33}
|
domain 2-3a
|
domain\:2-3a
|
domain y=xsqrt(2-x^2)
|
domain\:y=x\sqrt{2-x^{2}}
|
domain sqrt(x^2+8)
|
domain\:\sqrt{x^{2}+8}
|
inverse f(x)= 1/(3x-2)
|
inverse\:f(x)=\frac{1}{3x-2}
|
f(x,y)=x^2+y^2
|
f(x,y)=x^{2}+y^{2}
|
extreme f(x)=2x^3-3x^2-12x
|
extreme\:f(x)=2x^{3}-3x^{2}-12x
|
extreme f(x)=x^3-3x+2
|
extreme\:f(x)=x^{3}-3x+2
|
extreme f(x)=(ln(x))/(x^2)
|
extreme\:f(x)=\frac{\ln(x)}{x^{2}}
|
extreme f(x)=(ln(x))/x
|
extreme\:f(x)=\frac{\ln(x)}{x}
|
extreme f(x)=x^3-6x^2+9x
|
extreme\:f(x)=x^{3}-6x^{2}+9x
|
extreme f(x)=x^2e^{-x}
|
extreme\:f(x)=x^{2}e^{-x}
|
extreme f(x)=x^3-3x^2
|
extreme\:f(x)=x^{3}-3x^{2}
|
f(x,y)=sqrt(4-x^2-y^2)
|
f(x,y)=\sqrt{4-x^{2}-y^{2}}
|
range f(x)=3x^2-12x+16
|
range\:f(x)=3x^{2}-12x+16
|
extreme f(x)=2x^3+3x^2-12x
|
extreme\:f(x)=2x^{3}+3x^{2}-12x
|
f(x)=x^2+y^2
|
f(x)=x^{2}+y^{2}
|
f(x,y)=xy
|
f(x,y)=xy
|
extreme f(x)=x^4-4x^3
|
extreme\:f(x)=x^{4}-4x^{3}
|
f(x,y)=sqrt(9-x^2-y^2)
|
f(x,y)=\sqrt{9-x^{2}-y^{2}}
|
extreme f(x)=x^3-12x
|
extreme\:f(x)=x^{3}-12x
|
extreme f(x)=x^4-8x^2+3
|
extreme\:f(x)=x^{4}-8x^{2}+3
|
f(x,y)=ln(9-x^2-9y^2)
|
f(x,y)=\ln(9-x^{2}-9y^{2})
|
asymptotes f(x)= 2/x
|
asymptotes\:f(x)=\frac{2}{x}
|
extreme f(x)=x^4-2x^2
|
extreme\:f(x)=x^{4}-2x^{2}
|
extreme f(x)= x/(x^2+1)
|
extreme\:f(x)=\frac{x}{x^{2}+1}
|
extreme f(x)=sin(x)
|
extreme\:f(x)=\sin(x)
|
extreme f(x)=x^4-2x^3
|
extreme\:f(x)=x^{4}-2x^{3}
|
extreme f(x)=xsqrt(4-x^2)
|
extreme\:f(x)=x\sqrt{4-x^{2}}
|
extreme f(x)=(x^3)/(x^2-1)
|
extreme\:f(x)=\frac{x^{3}}{x^{2}-1}
|
extreme f(x)=2x^2-x^4
|
extreme\:f(x)=2x^{2}-x^{4}
|
f(x,y)=x^2-y^2
|
f(x,y)=x^{2}-y^{2}
|
extreme f(x)=(x^2)/(x-1)
|
extreme\:f(x)=\frac{x^{2}}{x-1}
|
extreme points f(x)=-x^2-2x+8
|
extreme\:points\:f(x)=-x^{2}-2x+8
|
f(x,y)=x+y
|
f(x,y)=x+y
|
extreme f(x)=x^2+2x-3
|
extreme\:f(x)=x^{2}+2x-3
|
extreme f(x,y)=x^2+2y^2x^2+y^2=1
|
extreme\:f(x,y)=x^{2}+2y^{2}x^{2}+y^{2}=1
|
f(x,y)=e^{xy}
|
f(x,y)=e^{xy}
|
extreme f(x)=3x-x^3
|
extreme\:f(x)=3x-x^{3}
|
extreme f(x)=xln(x)
|
extreme\:f(x)=x\ln(x)
|
f(x,y)=x^2+sqrt(y)
|
f(x,y)=x^{2}+\sqrt{y}
|
extreme x^3
|
extreme\:x^{3}
|
extreme f(x)= 1/x
|
extreme\:f(x)=\frac{1}{x}
|
domain f(x)=(sqrt(x-5))/(x-7)
|
domain\:f(x)=\frac{\sqrt{x-5}}{x-7}
|
extreme f(x)=x^3-3x^2+3
|
extreme\:f(x)=x^{3}-3x^{2}+3
|
extreme f(x)=-x^3+3x^2-4
|
extreme\:f(x)=-x^{3}+3x^{2}-4
|
f(x,y)=x^3+y^3-3xy
|
f(x,y)=x^{3}+y^{3}-3xy
|
f(x,y)= 1/(x^2+y^2+1)
|
f(x,y)=\frac{1}{x^{2}+y^{2}+1}
|
extreme f(x)=x^4-4x^3+10
|
extreme\:f(x)=x^{4}-4x^{3}+10
|
extreme f(x)=x^3-12x+3
|
extreme\:f(x)=x^{3}-12x+3
|
extreme f(x)=x^3-6x^2+9x+1
|
extreme\:f(x)=x^{3}-6x^{2}+9x+1
|
f(x,y)=sqrt(xy)
|
f(x,y)=\sqrt{xy}
|
extreme f(x)=xe^{-x}
|
extreme\:f(x)=xe^{-x}
|
extreme f(x)=xsqrt(8-x^2)
|
extreme\:f(x)=x\sqrt{8-x^{2}}
|
asymptotes (x^2+1)/(2x^2-3x-2)
|
asymptotes\:\frac{x^{2}+1}{2x^{2}-3x-2}
|
extreme f(x)=sin(x)+cos(x)
|
extreme\:f(x)=\sin(x)+\cos(x)
|
f(x,y)=4xy-x^4-2y^2+2
|
f(x,y)=4xy-x^{4}-2y^{2}+2
|
extreme f(x)=2x^3-3x^2-12x+1
|
extreme\:f(x)=2x^{3}-3x^{2}-12x+1
|
extreme f(x,y)=xy
|
extreme\:f(x,y)=xy
|
extreme f(x)=x^4+x^3-6x^2
|
extreme\:f(x)=x^{4}+x^{3}-6x^{2}
|
f(x)=sqrt(9-x^2-y^2)
|
f(x)=\sqrt{9-x^{2}-y^{2}}
|
f(x,y)=sqrt(x+y)
|
f(x,y)=\sqrt{x+y}
|
extreme f(x)=e^{-x^2}
|
extreme\:f(x)=e^{-x^{2}}
|
extreme f(x)=3x^5-5x^3
|
extreme\:f(x)=3x^{5}-5x^{3}
|
slope intercept 14x-4y=36
|
slope\:intercept\:14x-4y=36
|
extreme f(x)=x^2-4x
|
extreme\:f(x)=x^{2}-4x
|
extreme f(x)=x^3-3x+1
|
extreme\:f(x)=x^{3}-3x+1
|
f(x,y)=sqrt(16-x^2-y^2)
|
f(x,y)=\sqrt{16-x^{2}-y^{2}}
|
f(x,y)=x^4+y^4-4xy+1
|
f(x,y)=x^{4}+y^{4}-4xy+1
|
extreme f(x)=3x^{2/3}-2x,-1<= x<= 1
|
extreme\:f(x)=3x^{\frac{2}{3}}-2x,-1\le\:x\le\:1
|
extreme f(x)=3x^4+4x^3
|
extreme\:f(x)=3x^{4}+4x^{3}
|
extreme f(x)=x^4-8x^2+16
|
extreme\:f(x)=x^{4}-8x^{2}+16
|
f(x,y)=sqrt(1-x^2-y^2)
|
f(x,y)=\sqrt{1-x^{2}-y^{2}}
|
extreme f(x)=x^3-9x^2+24x-7
|
extreme\:f(x)=x^{3}-9x^{2}+24x-7
|
extreme f(x)=3x^{2/3}-2x
|
extreme\:f(x)=3x^{\frac{2}{3}}-2x
|
symmetry x^{((2)/(3))}(3x^{(2)}-6)^{((2)/(3))}+5
|
symmetry\:x^{((2)/(3))}(3x^{(2)}-6)^{((2)/(3))}+5
|
extreme f(x)=x^2ln(x)
|
extreme\:f(x)=x^{2}\ln(x)
|
extreme f(x)= 1/(x^3-6x^2+1)
|
extreme\:f(x)=\frac{1}{x^{3}-6x^{2}+1}
|
extreme f(x)=x^2e^x
|
extreme\:f(x)=x^{2}e^{x}
|
f(x,y)=sqrt(1-x^2)-sqrt(1-y^2)
|
f(x,y)=\sqrt{1-x^{2}}-\sqrt{1-y^{2}}
|
extreme f(x)=x^3-3x^2+3x+1
|
extreme\:f(x)=x^{3}-3x^{2}+3x+1
|
extreme f(x)=x^2-6x+5
|
extreme\:f(x)=x^{2}-6x+5
|
extreme f(x)=x^2-1
|
extreme\:f(x)=x^{2}-1
|
extreme f(x)= x/(x^2-9)
|
extreme\:f(x)=\frac{x}{x^{2}-9}
|
extreme f(x)=(x^2)/(x^2+3)
|
extreme\:f(x)=\frac{x^{2}}{x^{2}+3}
|
extreme f(x)=sqrt(x)ln(x)
|
extreme\:f(x)=\sqrt{x}\ln(x)
|
asymptotes f(x)=((x^2-4))/(x+2)
|
asymptotes\:f(x)=\frac{(x^{2}-4)}{x+2}
|
range f(x)=x^{(4)}+x^{(3)}-4x^{(2)}-2x+4
|
range\:f(x)=x^{(4)}+x^{(3)}-4x^{(2)}-2x+4
|
extreme f(x)=xsqrt(4-x)
|
extreme\:f(x)=x\sqrt{4-x}
|
f(x,y)=x^2+xy^2-2y
|
f(x,y)=x^{2}+xy^{2}-2y
|
f(t)=e^{at}
|
f(t)=e^{at}
|
extreme f(x)=x^5-5x^3-20x-2
|
extreme\:f(x)=x^{5}-5x^{3}-20x-2
|
extreme f(x)=3x^4-8x^3+6x^2
|
extreme\:f(x)=3x^{4}-8x^{3}+6x^{2}
|
extreme f(x)=x^3+3x^2+1
|
extreme\:f(x)=x^{3}+3x^{2}+1
|
extreme f(x)=x^4-2x^2+3
|
extreme\:f(x)=x^{4}-2x^{2}+3
|
extreme f(x)=x^3-6x^2+9x-8
|
extreme\:f(x)=x^{3}-6x^{2}+9x-8
|
extreme f(x)=(x-2)(x-3)^2
|
extreme\:f(x)=(x-2)(x-3)^{2}
|
extreme f(x,y)=ln(x-y)+x^2+y
|
extreme\:f(x,y)=\ln(x-y)+x^{2}+y
|
domain (x^3)/(sqrt(9-x))
|
domain\:\frac{x^{3}}{\sqrt{9-x}}
|
extreme f(x)=x^3-12x+2
|
extreme\:f(x)=x^{3}-12x+2
|