domain g(x)=(3x+1)/(x+8)
|
domain\:g(x)=\frac{3x+1}{x+8}
|
domain f(x)=(5x-15)/(x^2-9)
|
domain\:f(x)=\frac{5x-15}{x^{2}-9}
|
domain f(x)= 1/(sqrt(x-5)-2)+ln(x+5)
|
domain\:f(x)=\frac{1}{\sqrt{x-5}-2}+\ln(x+5)
|
domain f(x)=ln(arccos(x))
|
domain\:f(x)=\ln(\arccos(x))
|
domain f(x)=((x^3+3x^2+3x-188))/(216)
|
domain\:f(x)=\frac{(x^{3}+3x^{2}+3x-188)}{216}
|
domain f(x)=sqrt(x+2\sqrt{x-3)}
|
domain\:f(x)=\sqrt{x+2\sqrt{x-3}}
|
domain f(x)=(x-3)/(x^2-2x-3)
|
domain\:f(x)=\frac{x-3}{x^{2}-2x-3}
|
inverse f(x)=-5/(4-x)
|
inverse\:f(x)=-\frac{5}{4-x}
|
domain y=\sqrt[3]{x+2}
|
domain\:y=\sqrt[3]{x+2}
|
domain g(x)=(x+1)/(x^2-3x+2)
|
domain\:g(x)=\frac{x+1}{x^{2}-3x+2}
|
domain f(x)=ln(x^2+x-6)
|
domain\:f(x)=\ln(x^{2}+x-6)
|
domain f(x)=log_{2}(100-x^2)
|
domain\:f(x)=\log_{2}(100-x^{2})
|
domain f(x)=ln(x^2+x-2)
|
domain\:f(x)=\ln(x^{2}+x-2)
|
domain f(x)=(x-1)/(sqrt(x))
|
domain\:f(x)=\frac{x-1}{\sqrt{x}}
|
domain x^3+7
|
domain\:x^{3}+7
|
domain f(x)= x/(x^2+12x+32)
|
domain\:f(x)=\frac{x}{x^{2}+12x+32}
|
domain y=(x-2)/(x+2)
|
domain\:y=\frac{x-2}{x+2}
|
domain f(x)=arcsin((1-x^2)/(1+x^2))
|
domain\:f(x)=\arcsin(\frac{1-x^{2}}{1+x^{2}})
|
critical points y=(x-3)^3
|
critical\:points\:y=(x-3)^{3}
|
domain f(x)=4+2^{1-2x}
|
domain\:f(x)=4+2^{1-2x}
|
domain-x^2-x+2
|
domain\:-x^{2}-x+2
|
domain y=(x-2)/(x+3)
|
domain\:y=\frac{x-2}{x+3}
|
domain f(x)= 2/x-3
|
domain\:f(x)=\frac{2}{x}-3
|
domain (2x+5)/(x+2)
|
domain\:\frac{2x+5}{x+2}
|
domain f(x)= 2/x+3
|
domain\:f(x)=\frac{2}{x}+3
|
domain f(x)=arcsin(2x-3)
|
domain\:f(x)=\arcsin(2x-3)
|
domain y=|x+1|
|
domain\:y=\left|x+1\right|
|
domain f(x)=10(4-x)
|
domain\:f(x)=10(4-x)
|
domain f(x)=2^{1/x}
|
domain\:f(x)=2^{\frac{1}{x}}
|
inflection points f(x)= 2/(x-3)
|
inflection\:points\:f(x)=\frac{2}{x-3}
|
domain f(x)=x^3+6x^2+8x
|
domain\:f(x)=x^{3}+6x^{2}+8x
|
domain y=-3/x
|
domain\:y=-\frac{3}{x}
|
domain ln(arcsin(x))
|
domain\:\ln(\arcsin(x))
|
domain f(x)=-1+sqrt(2-x^2)
|
domain\:f(x)=-1+\sqrt{2-x^{2}}
|
domain cos(arctan(1-x^2))
|
domain\:\cos(\arctan(1-x^{2}))
|
domain f(x)=(x^2-9x-36)/(sqrt(x+16))
|
domain\:f(x)=\frac{x^{2}-9x-36}{\sqrt{x+16}}
|
domain 1+ln(x^3-8)
|
domain\:1+\ln(x^{3}-8)
|
domain f(x)= 1/(1-cos^2(x-3/2))
|
domain\:f(x)=\frac{1}{1-\cos^{2}(x-\frac{3}{2})}
|
domain (x+8)/3
|
domain\:\frac{x+8}{3}
|
domain y=-(0.02)^{x+6}
|
domain\:y=-(0.02)^{x+6}
|
inflection points f(x)=3t^5+5t^4-60t^3+90
|
inflection\:points\:f(x)=3t^{5}+5t^{4}-60t^{3}+90
|
domain g(x)=(sqrt(x-2))/(sqrt(x-4))
|
domain\:g(x)=\frac{\sqrt{x-2}}{\sqrt{x-4}}
|
domain (4x+9)/(3x-4)
|
domain\:\frac{4x+9}{3x-4}
|
domain f(x)=log_{10}(-x-20)
|
domain\:f(x)=\log_{10}(-x-20)
|
domain f(x)= 1/(sqrt(1-|2x|))
|
domain\:f(x)=\frac{1}{\sqrt{1-\left|2x\right|}}
|
domain (2x+5)/(x-1)
|
domain\:\frac{2x+5}{x-1}
|
domain f(x)=(x^2+1)/(x^2-16)
|
domain\:f(x)=\frac{x^{2}+1}{x^{2}-16}
|
domain 2/(t+4)
|
domain\:\frac{2}{t+4}
|
domain g(x)=3x-1
|
domain\:g(x)=3x-1
|
domain f(x)= 1/(sqrt(x-5)-1)
|
domain\:f(x)=\frac{1}{\sqrt{x-5}-1}
|
domain f(x)=3x-1,2x,x>= 1,x<1
|
domain\:f(x)=3x-1,2x,x\ge\:1,x<1
|
domain f(x)=3(3/x)+12
|
domain\:f(x)=3(\frac{3}{x})+12
|
domain g(x)=3x+4
|
domain\:g(x)=3x+4
|
domain y=log_{4}(x-2)
|
domain\:y=\log_{4}(x-2)
|
domain y=ln(3x^2-2x-1)
|
domain\:y=\ln(3x^{2}-2x-1)
|
domain 2(4x-9)+5
|
domain\:2(4x-9)+5
|
domain f(x)= 1/2 ln(10x+5)
|
domain\:f(x)=\frac{1}{2}\ln(10x+5)
|
domain (x+5)/(x^2-3x+5)
|
domain\:\frac{x+5}{x^{2}-3x+5}
|
domain f(x)=4-5^{2-x}
|
domain\:f(x)=4-5^{2-x}
|
domain f(x)=sqrt(x^2-6x+5)
|
domain\:f(x)=\sqrt{x^{2}-6x+5}
|
domain f(x)=-4.3
|
domain\:f(x)=-4.3
|
domain-3csc(π/2 t)-3
|
domain\:-3\csc(\frac{π}{2}t)-3
|
slope m=4,(0,0)
|
slope\:m=4,(0,0)
|
domain f(x)=4sin^2(x),-π<= x<= π
|
domain\:f(x)=4\sin^{2}(x),-π\le\:x\le\:π
|
domain f(t)=(5t^2-64)/(3t+17)
|
domain\:f(t)=\frac{5t^{2}-64}{3t+17}
|
domain sqrt(-2x-5)
|
domain\:\sqrt{-2x-5}
|
domain f(x)=(sqrt(2-x))/(x^2-4x+3)
|
domain\:f(x)=\frac{\sqrt{2-x}}{x^{2}-4x+3}
|
domain f(x)=-5.4
|
domain\:f(x)=-5.4
|
domain f(x)=4^{log_{2}(16x)+1}=1
|
domain\:f(x)=4^{\log_{2}(16x)+1}=1
|
domain f(x)=((x^2+1)(x+1))/(x-1)
|
domain\:f(x)=\frac{(x^{2}+1)(x+1)}{x-1}
|
domain f(x)=sqrt(3x^2+1)
|
domain\:f(x)=\sqrt{3x^{2}+1}
|
domain (-2)/(x-2)
|
domain\:\frac{-2}{x-2}
|
domain f(x)=-3+ln(x)
|
domain\:f(x)=-3+\ln(x)
|
midpoint (-8,-1)(2,-8)
|
midpoint\:(-8,-1)(2,-8)
|
domain f(x)=(x^2+4x+4)/(2x)
|
domain\:f(x)=\frac{x^{2}+4x+4}{2x}
|
domain (sqrt(|x|))/(sqrt(|x|)-5)
|
domain\:\frac{\sqrt{\left|x\right|}}{\sqrt{\left|x\right|}-5}
|
domain f(x)=(4+x)/(2-x)
|
domain\:f(x)=\frac{4+x}{2-x}
|
domain f(x)=(x^2)/6+4
|
domain\:f(x)=\frac{x^{2}}{6}+4
|
domain x/(-4x+7)
|
domain\:\frac{x}{-4x+7}
|
domain (6x^2+7x-3)/(3x^2-4x+1)
|
domain\:\frac{6x^{2}+7x-3}{3x^{2}-4x+1}
|
domain f(x)= 1/(5x-15)
|
domain\:f(x)=\frac{1}{5x-15}
|
domain log_{3}(f(x))(x)=x^2-2x+3
|
domain\:\log_{3}(f(x))(x)=x^{2}-2x+3
|
domain x^2,x<0
|
domain\:x^{2},x<0
|
domain f(x)=sqrt(6)x-x^2
|
domain\:f(x)=\sqrt{6}x-x^{2}
|
inverse f(x)=-x^2+4
|
inverse\:f(x)=-x^{2}+4
|
intercepts f(x)=sec(x)
|
intercepts\:f(x)=\sec(x)
|
domain f(x)=log_{10}(7-4x)
|
domain\:f(x)=\log_{10}(7-4x)
|
domain ln(2x)
|
domain\:\ln(2x)
|
domain f(x)=(2x-3)^2
|
domain\:f(x)=(2x-3)^{2}
|
domain f(x)=((x-2))/(x^2-3x+2)
|
domain\:f(x)=\frac{(x-2)}{x^{2}-3x+2}
|
domain ln(2x^2-1)
|
domain\:\ln(2x^{2}-1)
|
domain f(x)=(3x+1)/(2x-1)
|
domain\:f(x)=\frac{3x+1}{2x-1}
|
domain f(x)=(\sqrt[4]{2x+9})^{-3}
|
domain\:f(x)=(\sqrt[4]{2x+9})^{-3}
|
domain f(x)= x/(x^2+5x)
|
domain\:f(x)=\frac{x}{x^{2}+5x}
|
domain f(x)=2x^2-6x-8
|
domain\:f(x)=2x^{2}-6x-8
|
domain f(x)=(2x)^3-3
|
domain\:f(x)=(2x)^{3}-3
|
amplitude y=cos(x)
|
amplitude\:y=\cos(x)
|
domain f(x)=x^3+x^2-5x+3
|
domain\:f(x)=x^{3}+x^{2}-5x+3
|
domain f(x)= x/(sqrt(x-9))
|
domain\:f(x)=\frac{x}{\sqrt{x-9}}
|
domain 3/(2x-3)
|
domain\:\frac{3}{2x-3}
|