asymptotes of f(x)=(-3x^2-12x)/(2x+8)
|
asymptotes\:f(x)=\frac{-3x^{2}-12x}{2x+8}
|
range of (x+6)/(2x-4)
|
range\:\frac{x+6}{2x-4}
|
domain of 2log_{2}(x)+6
|
domain\:2\log_{2}(x)+6
|
parity f(x)=2x+3
|
parity\:f(x)=2x+3
|
inverse of f(x)=(x^2-3)/5
|
inverse\:f(x)=\frac{x^{2}-3}{5}
|
extreme points of x^2+12x+11
|
extreme\:points\:x^{2}+12x+11
|
parity f(x)=x^3+4x
|
parity\:f(x)=x^{3}+4x
|
critical points of 2xln(x)+x
|
critical\:points\:2x\ln(x)+x
|
symmetry y=-2x^2+8
|
symmetry\:y=-2x^{2}+8
|
extreme points of f(x)=xe^{-6x}
|
extreme\:points\:f(x)=xe^{-6x}
|
asymptotes of y=(1/2)^x+1
|
asymptotes\:y=(\frac{1}{2})^{x}+1
|
domain of f(x)=2sqrt(-(x-1))+2
|
domain\:f(x)=2\sqrt{-(x-1)}+2
|
domain of f(x)=x+sqrt(x)+2
|
domain\:f(x)=x+\sqrt{x}+2
|
distance (0,0)(2,4)
|
distance\:(0,0)(2,4)
|
asymptotes of y=(x+3)/x
|
asymptotes\:y=\frac{x+3}{x}
|
extreme points of f(x)=x^3-2x^2-15x+2
|
extreme\:points\:f(x)=x^{3}-2x^{2}-15x+2
|
domain of f(x)=e^{-3x}
|
domain\:f(x)=e^{-3x}
|
periodicity of f(x)=2sin((pi)/2 x)
|
periodicity\:f(x)=2\sin(\frac{\pi}{2}x)
|
critical points of x^3-6x^2+9x+1
|
critical\:points\:x^{3}-6x^{2}+9x+1
|
intercepts of f(x)=-(x+3)^2
|
intercepts\:f(x)=-(x+3)^{2}
|
domain of f(x)=sqrt(1+x)
|
domain\:f(x)=\sqrt{1+x}
|
range of f(x)= 1/(5+e^{2x)}
|
range\:f(x)=\frac{1}{5+e^{2x}}
|
range of 3x^4-15
|
range\:3x^{4}-15
|
asymptotes of f(x)=(13x^2)/(7x^2+6)
|
asymptotes\:f(x)=\frac{13x^{2}}{7x^{2}+6}
|
slope of y= 1/2 x+2
|
slope\:y=\frac{1}{2}x+2
|
inverse of f(x)=(4x)/(x^2+81)
|
inverse\:f(x)=\frac{4x}{x^{2}+81}
|
midpoint (sqrt(18),1)(sqrt(2),-1)
|
midpoint\:(\sqrt{18},1)(\sqrt{2},-1)
|
inverse of f(x)=ln(7x),x> 0
|
inverse\:f(x)=\ln(7x),x\gt\:0
|
range of y=-ln(-x),-1< x< 0
|
range\:y=-\ln(-x),-1\lt\:x\lt\:0
|
asymptotes of (x^2-x-6)/(2x+4)
|
asymptotes\:\frac{x^{2}-x-6}{2x+4}
|
domain of-7/((2+x)^2)
|
domain\:-\frac{7}{(2+x)^{2}}
|
domain of f(x)=2x^2+9x-3
|
domain\:f(x)=2x^{2}+9x-3
|
inverse of f(x)=9+2\sqrt[3]{x}
|
inverse\:f(x)=9+2\sqrt[3]{x}
|
domain of 1/(sqrt(x+1))
|
domain\:\frac{1}{\sqrt{x+1}}
|
inflection points of (x^2+6)(36-x^2)
|
inflection\:points\:(x^{2}+6)(36-x^{2})
|
inverse of x^2+2x+2
|
inverse\:x^{2}+2x+2
|
intercepts of f(x)=-3x+3y=-9
|
intercepts\:f(x)=-3x+3y=-9
|
shift f(x)=cos(2x+pi)
|
shift\:f(x)=\cos(2x+\pi)
|
domain of 2cos(x)-sqrt(2x)
|
domain\:2\cos(x)-\sqrt{2x}
|
domain of f(x)=4x^2+2x-1
|
domain\:f(x)=4x^{2}+2x-1
|
inverse of f(x)= 1/4 x^2
|
inverse\:f(x)=\frac{1}{4}x^{2}
|
midpoint (3,4)(0,0)
|
midpoint\:(3,4)(0,0)
|
critical points of f(x)=x^3-3x-2
|
critical\:points\:f(x)=x^{3}-3x-2
|
asymptotes of g(t)=(13)/(1+3^{-t)}
|
asymptotes\:g(t)=\frac{13}{1+3^{-t}}
|
intercepts of f(x)=(x-1)^2-4
|
intercepts\:f(x)=(x-1)^{2}-4
|
critical points of f(x)=(x-8)^3
|
critical\:points\:f(x)=(x-8)^{3}
|
domain of f(x)=(10)/(x^2-2x)
|
domain\:f(x)=\frac{10}{x^{2}-2x}
|
domain of f(x)=12x+2
|
domain\:f(x)=12x+2
|
range of (x-7)/(12x+2)
|
range\:\frac{x-7}{12x+2}
|
inverse of f(x)=(3x+2)/5
|
inverse\:f(x)=\frac{3x+2}{5}
|
domain of (x+2)/(x^3-3)
|
domain\:\frac{x+2}{x^{3}-3}
|
inverse of f(x)=y=3x+12
|
inverse\:f(x)=y=3x+12
|
line (-3,-4)(0,-3)
|
line\:(-3,-4)(0,-3)
|
domain of f(x)= x/(7x+36)
|
domain\:f(x)=\frac{x}{7x+36}
|
asymptotes of ((x^3+6x^2+9x))/(x+3)
|
asymptotes\:\frac{(x^{3}+6x^{2}+9x)}{x+3}
|
inverse of f(x)=x^2-4x+5
|
inverse\:f(x)=x^{2}-4x+5
|
distance (0,-2),(4,2)
|
distance\:(0,-2),(4,2)
|
parity f(x)=-x^2+2x-4
|
parity\:f(x)=-x^{2}+2x-4
|
domain of ln(x^2-9)
|
domain\:\ln(x^{2}-9)
|
parity f(x)=(1/(x^5+x+1))
|
parity\:f(x)=(\frac{1}{x^{5}+x+1})
|
domain of f(x)=t^3
|
domain\:f(x)=t^{3}
|
inverse of 1/(cos^2(x))
|
inverse\:\frac{1}{\cos^{2}(x)}
|
asymptotes of f(x)=(3x-3)/(-x^2+2x-1)
|
asymptotes\:f(x)=\frac{3x-3}{-x^{2}+2x-1}
|
asymptotes of ln(x-5)
|
asymptotes\:\ln(x-5)
|
midpoint (-1,1)(-10,-5)
|
midpoint\:(-1,1)(-10,-5)
|
domain of f(x)=(x^3)/3
|
domain\:f(x)=\frac{x^{3}}{3}
|
periodicity of f(x)=sin(x/6)
|
periodicity\:f(x)=\sin(\frac{x}{6})
|
range of (12-x-x^2)/(|x-3|)
|
range\:\frac{12-x-x^{2}}{|x-3|}
|
inverse of f(x)=2(x-1)^2+7
|
inverse\:f(x)=2(x-1)^{2}+7
|
critical points of f(x)=2(3-x)
|
critical\:points\:f(x)=2(3-x)
|
inflection points of x^{1/3}
|
inflection\:points\:x^{\frac{1}{3}}
|
midpoint (0,2)(-3, 3/2)
|
midpoint\:(0,2)(-3,\frac{3}{2})
|
asymptotes of f(x)=(x^2-x-6)/(x^2-6x+8)
|
asymptotes\:f(x)=\frac{x^{2}-x-6}{x^{2}-6x+8}
|
critical points of f(x)=(e^x)/(x-1)
|
critical\:points\:f(x)=\frac{e^{x}}{x-1}
|
domain of f(x)=(2x^2-x-8)/(x^2+9)
|
domain\:f(x)=\frac{2x^{2}-x-8}{x^{2}+9}
|
domain of f(x)= 1/(sqrt(6-x))
|
domain\:f(x)=\frac{1}{\sqrt{6-x}}
|
domain of f(x)=(x^2)/(x^2+x-90)
|
domain\:f(x)=\frac{x^{2}}{x^{2}+x-90}
|
inverse of f(x)=6/(x-9)
|
inverse\:f(x)=6/(x-9)
|
periodicity of f(x)=8sin(2x)
|
periodicity\:f(x)=8\sin(2x)
|
inflection points of (e^x)/(3+e^x)
|
inflection\:points\:\frac{e^{x}}{3+e^{x}}
|
domain of sqrt(x-1)sqrt(1-x)
|
domain\:\sqrt{x-1}\sqrt{1-x}
|
asymptotes of f(x)= 3/(x^2-16)
|
asymptotes\:f(x)=\frac{3}{x^{2}-16}
|
domain of (x+4)/(x^2-25)
|
domain\:\frac{x+4}{x^{2}-25}
|
inverse of f(x)=(x-3)^2-4
|
inverse\:f(x)=(x-3)^{2}-4
|
inverse of f(x)=-2cos(3x)
|
inverse\:f(x)=-2\cos(3x)
|
asymptotes of f(x)=(x^2+7x+8)/(x+3)
|
asymptotes\:f(x)=\frac{x^{2}+7x+8}{x+3}
|
periodicity of f(x)=cos((23pi)/6)
|
periodicity\:f(x)=\cos(\frac{23\pi}{6})
|
slope of 6y-3x=-24
|
slope\:6y-3x=-24
|
domain of f(x)= 1/(sqrt(5-x))
|
domain\:f(x)=\frac{1}{\sqrt{5-x}}
|
asymptotes of f(x)=(x^2+3x+2)/(x-1)
|
asymptotes\:f(x)=\frac{x^{2}+3x+2}{x-1}
|
midpoint (2,4)(-4,-2)
|
midpoint\:(2,4)(-4,-2)
|
domain of 8/x-(10)/(x+10)
|
domain\:\frac{8}{x}-\frac{10}{x+10}
|
inverse of f(x)=0.25x+5.2
|
inverse\:f(x)=0.25x+5.2
|
domain of f(x)=sqrt(x^3-9x)
|
domain\:f(x)=\sqrt{x^{3}-9x}
|
intercepts of (x^2-25)/(-2x^2+9x+5)
|
intercepts\:\frac{x^{2}-25}{-2x^{2}+9x+5}
|
monotone intervals f(x)=(8x^2)/(x-6)
|
monotone\:intervals\:f(x)=\frac{8x^{2}}{x-6}
|
domain of (x+8)/(x^2+x-56)
|
domain\:\frac{x+8}{x^{2}+x-56}
|
asymptotes of f(x)=((x+4))/((x-3))
|
asymptotes\:f(x)=\frac{(x+4)}{(x-3)}
|
asymptotes of f(x)= 5/(x-1)
|
asymptotes\:f(x)=\frac{5}{x-1}
|
intercepts of f(x)=(2x^2-5x+2)/(x^2-4)
|
intercepts\:f(x)=\frac{2x^{2}-5x+2}{x^{2}-4}
|