midpoint (0,-2)(10,-6)
|
midpoint\:(0,-2)(10,-6)
|
midpoint (2,-3)(-2,5)
|
midpoint\:(2,-3)(-2,5)
|
critical points of 8-3x-2x^2
|
critical\:points\:8-3x-2x^{2}
|
domain of f(x)=e^{-4t}
|
domain\:f(x)=e^{-4t}
|
inverse of f(x)=y=x^2+4
|
inverse\:f(x)=y=x^{2}+4
|
symmetry y=(x+3)^2
|
symmetry\:y=(x+3)^{2}
|
line (14,-1.5)(16,0)
|
line\:(14,-1.5)(16,0)
|
asymptotes of f(x)=(x-8)/(x-2)
|
asymptotes\:f(x)=\frac{x-8}{x-2}
|
intercepts of f(x)=(x^3+8)/(x^2-x-6)
|
intercepts\:f(x)=\frac{x^{3}+8}{x^{2}-x-6}
|
inverse of f(x)=1-sqrt(3-x)
|
inverse\:f(x)=1-\sqrt{3-x}
|
domain of y=((2x+5))/((x-3))
|
domain\:y=\frac{(2x+5)}{(x-3)}
|
asymptotes of-4/(5/x-5)
|
asymptotes\:-\frac{4}{\frac{5}{x}-5}
|
domain of f(x)=sqrt(6\sqrt{6x-6)-6}
|
domain\:f(x)=\sqrt{6\sqrt{6x-6}-6}
|
domain of f(x)=sqrt(x^2-7x)
|
domain\:f(x)=\sqrt{x^{2}-7x}
|
inverse of g(x)=(-5+2x)/5
|
inverse\:g(x)=\frac{-5+2x}{5}
|
intercepts of x^2-2x-8
|
intercepts\:x^{2}-2x-8
|
inverse of 1/2
|
inverse\:\frac{1}{2}
|
range of x-2
|
range\:x-2
|
midpoint (4,16)(-12,-8)
|
midpoint\:(4,16)(-12,-8)
|
domain of f(x)=(2x)/(x^2-1)
|
domain\:f(x)=\frac{2x}{x^{2}-1}
|
domain of f(x)=3+9/x
|
domain\:f(x)=3+\frac{9}{x}
|
slope of y=-2x+8
|
slope\:y=-2x+8
|
critical points of x^7+x^2-15
|
critical\:points\:x^{7}+x^{2}-15
|
critical points of 1/(x-1)
|
critical\:points\:\frac{1}{x-1}
|
inverse of sqrt(1-x^2)
|
inverse\:\sqrt{1-x^{2}}
|
inverse of f(x)=x^2-3x+3
|
inverse\:f(x)=x^{2}-3x+3
|
intercepts of f(x)=x^3-8x^2+9x+18=0
|
intercepts\:f(x)=x^{3}-8x^{2}+9x+18=0
|
asymptotes of f(x)=(x^2-1)/x
|
asymptotes\:f(x)=\frac{x^{2}-1}{x}
|
f(x)=(x-1)/((x+3)(x-2))
|
f(x)=\frac{x-1}{(x+3)(x-2)}
|
range of f(x)= 2/(x-6)
|
range\:f(x)=\frac{2}{x-6}
|
asymptotes of xsqrt(4-x)
|
asymptotes\:x\sqrt{4-x}
|
domain of f(x)=sqrt(x+2)-sqrt(x+1)
|
domain\:f(x)=\sqrt{x+2}-\sqrt{x+1}
|
inverse of f(x)=(5x+1)/7
|
inverse\:f(x)=\frac{5x+1}{7}
|
domain of f(x)=4x^2-4x+1
|
domain\:f(x)=4x^{2}-4x+1
|
slope intercept of-2/3
|
slope\:intercept\:-\frac{2}{3}
|
range of f(x)=sqrt(x^2-81)
|
range\:f(x)=\sqrt{x^{2}-81}
|
intercepts of f(x)=2t(t-3)(t+1)^2
|
intercepts\:f(x)=2t(t-3)(t+1)^{2}
|
inflection points of f(x)= 1/(x^2+1)
|
inflection\:points\:f(x)=\frac{1}{x^{2}+1}
|
range of 2/3 sqrt(x+4)-1
|
range\:\frac{2}{3}\sqrt{x+4}-1
|
range of f(x)=x^2+x-2
|
range\:f(x)=x^{2}+x-2
|
parity f(x)=x^3-x^2+4x+2
|
parity\:f(x)=x^{3}-x^{2}+4x+2
|
range of (x+2)/6
|
range\:\frac{x+2}{6}
|
extreme points of f(x)=sin(x)
|
extreme\:points\:f(x)=\sin(x)
|
inverse of (10(x-4))/3
|
inverse\:\frac{10(x-4)}{3}
|
domain of f(x)= 3/(x^2+4)
|
domain\:f(x)=\frac{3}{x^{2}+4}
|
intercepts of ((x^2-8x+15))/(x^2-25)
|
intercepts\:\frac{(x^{2}-8x+15)}{x^{2}-25}
|
asymptotes of f(x)=(x-11)/(x^2-121)
|
asymptotes\:f(x)=\frac{x-11}{x^{2}-121}
|
domain of g(x)=sqrt(x-3)
|
domain\:g(x)=\sqrt{x-3}
|
domain of f(x)=x^2-4x-12
|
domain\:f(x)=x^{2}-4x-12
|
inverse of (x^2-5)/(7x^2)
|
inverse\:\frac{x^{2}-5}{7x^{2}}
|
inverse of f(x)=-2ln(-x+2)+5
|
inverse\:f(x)=-2\ln(-x+2)+5
|
domain of f(x)=(x-3)/(x^2-5x)
|
domain\:f(x)=\frac{x-3}{x^{2}-5x}
|
slope of y=ax+1
|
slope\:y=ax+1
|
midpoint (7,1)(-16,-16)
|
midpoint\:(7,1)(-16,-16)
|
domain of f(x)=((2x+1))/(x^2+x-2)
|
domain\:f(x)=\frac{(2x+1)}{x^{2}+x-2}
|
extreme points of f(x)=(x^3)/3-4x
|
extreme\:points\:f(x)=\frac{x^{3}}{3}-4x
|
domain of (5x)/(2x+3)
|
domain\:\frac{5x}{2x+3}
|
domain of f(x)=(sqrt(x))/(6x^2+5x-1)
|
domain\:f(x)=\frac{\sqrt{x}}{6x^{2}+5x-1}
|
intercepts of f(x)=(3x)/(x+5)
|
intercepts\:f(x)=\frac{3x}{x+5}
|
slope of y=5x-9
|
slope\:y=5x-9
|
f(x)=x^2+5x+6
|
f(x)=x^{2}+5x+6
|
domain of (x^2-4)/(x^3)
|
domain\:\frac{x^{2}-4}{x^{3}}
|
inverse of (3-2x)/(3x+4)
|
inverse\:\frac{3-2x}{3x+4}
|
inverse of f(x)=-3x+3+sqrt(18x-18)
|
inverse\:f(x)=-3x+3+\sqrt{18x-18}
|
inverse of f(x)=5-2x^3
|
inverse\:f(x)=5-2x^{3}
|
domain of f(x)=25x-6
|
domain\:f(x)=25x-6
|
intercepts of f(x)=(5x-10)/(3x-15)
|
intercepts\:f(x)=\frac{5x-10}{3x-15}
|
slope intercept of 3x+2y=8
|
slope\:intercept\:3x+2y=8
|
domain of sqrt(5x+35)
|
domain\:\sqrt{5x+35}
|
domain of f(x)=(sqrt(3-x))/(x^2-6x+8)
|
domain\:f(x)=\frac{\sqrt{3-x}}{x^{2}-6x+8}
|
inverse of f(x)=3x^3+8
|
inverse\:f(x)=3x^{3}+8
|
inverse of f(x)= x/(3x+1)
|
inverse\:f(x)=\frac{x}{3x+1}
|
amplitude of y=-4cos(2x)
|
amplitude\:y=-4\cos(2x)
|
range of f(x)=-1/2 x^2+5x-2
|
range\:f(x)=-\frac{1}{2}x^{2}+5x-2
|
domain of f(x)=(sqrt(x+8))/(x-5)
|
domain\:f(x)=\frac{\sqrt{x+8}}{x-5}
|
inverse of f(x)=6x^{1/4}+8
|
inverse\:f(x)=6x^{\frac{1}{4}}+8
|
domain of-x/(x-8)
|
domain\:-\frac{x}{x-8}
|
line (-3,-1)(4,-2)
|
line\:(-3,-1)(4,-2)
|
line (3,-4)(-1,4)
|
line\:(3,-4)(-1,4)
|
critical points of f(x)=sin(pi x)
|
critical\:points\:f(x)=\sin(\pi\:x)
|
critical points of x^4-2x^2+3
|
critical\:points\:x^{4}-2x^{2}+3
|
critical points of sqrt(1-x^2)
|
critical\:points\:\sqrt{1-x^{2}}
|
range of f(x)=sqrt(x-2)
|
range\:f(x)=\sqrt{x-2}
|
critical points of 4x^3-18x^2+3
|
critical\:points\:4x^{3}-18x^{2}+3
|
asymptotes of f(x)=2sec(2x)
|
asymptotes\:f(x)=2\sec(2x)
|
intercepts of f(x)=5x^2+4x-1
|
intercepts\:f(x)=5x^{2}+4x-1
|
domain of f(x)=x^3-4x+7
|
domain\:f(x)=x^{3}-4x+7
|
domain of f(x)=125x+1200
|
domain\:f(x)=125x+1200
|
domain of f(x)=(x+3)/(2-x)
|
domain\:f(x)=\frac{x+3}{2-x}
|
monotone intervals f(x)=5x^{4/7}-x^{5/7}
|
monotone\:intervals\:f(x)=5x^{\frac{4}{7}}-x^{\frac{5}{7}}
|
asymptotes of (x^3)/(x^2-4x-5)
|
asymptotes\:\frac{x^{3}}{x^{2}-4x-5}
|
critical points of g(x)=(x^3)/((x+1))
|
critical\:points\:g(x)=\frac{x^{3}}{(x+1)}
|
inverse of 4/(x+3)
|
inverse\:\frac{4}{x+3}
|
slope intercept of y-5=-1/5 (x-1)
|
slope\:intercept\:y-5=-\frac{1}{5}(x-1)
|
asymptotes of x^2+x+2
|
asymptotes\:x^{2}+x+2
|
periodicity of-1/4 cos(-1/4 x)
|
periodicity\:-\frac{1}{4}\cos(-\frac{1}{4}x)
|
range of f(x)=(4e^x)/(1+2e^x)
|
range\:f(x)=\frac{4e^{x}}{1+2e^{x}}
|
range of 7/(x-4)
|
range\:\frac{7}{x-4}
|
extreme points of f(x)=x^3+x^2-4x-3
|
extreme\:points\:f(x)=x^{3}+x^{2}-4x-3
|
midpoint (3,-1)(-5,-3)
|
midpoint\:(3,-1)(-5,-3)
|