perpendicular 7,-4
|
perpendicular\:7,-4
|
midpoint (-2,4)(6,2)
|
midpoint\:(-2,4)(6,2)
|
perpendicular y=2x,\at (1,2)
|
perpendicular\:y=2x,\at\:(1,2)
|
slope of y=8x+10
|
slope\:y=8x+10
|
inverse of y=e^{x+3}
|
inverse\:y=e^{x+3}
|
inverse of x^2-2
|
inverse\:x^{2}-2
|
asymptotes of f(x)=(4x^2)/(x^2+4)
|
asymptotes\:f(x)=\frac{4x^{2}}{x^{2}+4}
|
range of f(x)=-x/(x^2-4)
|
range\:f(x)=-\frac{x}{x^{2}-4}
|
domain of-x^2-4x+4
|
domain\:-x^{2}-4x+4
|
asymptotes of f(x)=((x^2+1))/(3x-2x^2)
|
asymptotes\:f(x)=\frac{(x^{2}+1)}{3x-2x^{2}}
|
inverse of f(x)=(-3)/(x+4)
|
inverse\:f(x)=\frac{-3}{x+4}
|
critical points of 2x+1
|
critical\:points\:2x+1
|
monotone intervals f(x)=(x^2)/(x-2)
|
monotone\:intervals\:f(x)=\frac{x^{2}}{x-2}
|
domain of f(x)=-3/2+1
|
domain\:f(x)=-\frac{3}{2}+1
|
range of f(x)=(x^3)/(x^4)
|
range\:f(x)=\frac{x^{3}}{x^{4}}
|
inverse of f(x)=(4x+5)/(2-5x)
|
inverse\:f(x)=\frac{4x+5}{2-5x}
|
range of 1/(2x+4)
|
range\:\frac{1}{2x+4}
|
inverse of f(x)=((x-2)/7)^{1/3}
|
inverse\:f(x)=(\frac{x-2}{7})^{\frac{1}{3}}
|
extreme points of f(x)=36x+9/x
|
extreme\:points\:f(x)=36x+\frac{9}{x}
|
domain of f(x)= 1/(x^2-x-90)
|
domain\:f(x)=\frac{1}{x^{2}-x-90}
|
inverse of f(x)=((x-1))/((x+2))
|
inverse\:f(x)=\frac{(x-1)}{(x+2)}
|
domain of f(x)=25x-x^2
|
domain\:f(x)=25x-x^{2}
|
domain of f(x)=x^2,-2<= x<= 5
|
domain\:f(x)=x^{2},-2\le\:x\le\:5
|
domain of f(x)=(x+7)/(x^2-x-56)
|
domain\:f(x)=\frac{x+7}{x^{2}-x-56}
|
slope intercept of 0.5*80+25
|
slope\:intercept\:0.5\cdot\:80+25
|
inverse of f(x)=65
|
inverse\:f(x)=65
|
inverse of f(x)= 1/2*2^x
|
inverse\:f(x)=\frac{1}{2}\cdot\:2^{x}
|
asymptotes of f(x)=(x^2+2x+1)/(3x^2-x-4)
|
asymptotes\:f(x)=\frac{x^{2}+2x+1}{3x^{2}-x-4}
|
parallel y=-10x
|
parallel\:y=-10x
|
asymptotes of (-4)/(x^2)+1
|
asymptotes\:\frac{-4}{x^{2}}+1
|
inverse of y=sqrt(2x-1)
|
inverse\:y=\sqrt{2x-1}
|
inverse of f(x)=log_{5}(-2x^4)
|
inverse\:f(x)=\log_{5}(-2x^{4})
|
extreme points of 4x^{1/3}-x^{4/3}
|
extreme\:points\:4x^{\frac{1}{3}}-x^{\frac{4}{3}}
|
line (150,149.2)(165,163.5)
|
line\:(150,149.2)(165,163.5)
|
inverse of f(x)=5-2e^x
|
inverse\:f(x)=5-2e^{x}
|
critical points of xln(5x)
|
critical\:points\:x\ln(5x)
|
range of x^3+2x^2-x+4
|
range\:x^{3}+2x^{2}-x+4
|
range of f(x)=((x+1))/((2x+1))
|
range\:f(x)=\frac{(x+1)}{(2x+1)}
|
critical points of f(x)=1+3/x+2/(x^2)
|
critical\:points\:f(x)=1+\frac{3}{x}+\frac{2}{x^{2}}
|
intercepts of f(x)=x^2+5x
|
intercepts\:f(x)=x^{2}+5x
|
slope intercept of 2x+3y=-12
|
slope\:intercept\:2x+3y=-12
|
range of sqrt(5/x+6)
|
range\:\sqrt{\frac{5}{x}+6}
|
inverse of f(v)=(2v-7)^2
|
inverse\:f(v)=(2v-7)^{2}
|
domain of \sqrt[4]{x^4-16}
|
domain\:\sqrt[4]{x^{4}-16}
|
domain of f(x)= 1/2 x-1/10
|
domain\:f(x)=\frac{1}{2}x-\frac{1}{10}
|
distance (m,n)(0,0)
|
distance\:(m,n)(0,0)
|
midpoint (6,-5)(3,1)
|
midpoint\:(6,-5)(3,1)
|
extreme points of f(x)=2x^3-3x^2-72x+3
|
extreme\:points\:f(x)=2x^{3}-3x^{2}-72x+3
|
range of log_{3}(x+6)
|
range\:\log_{3}(x+6)
|
inverse of f(x)=(6^x)/3
|
inverse\:f(x)=\frac{6^{x}}{3}
|
intercepts of f(x)=-3x^2-24x-47
|
intercepts\:f(x)=-3x^{2}-24x-47
|
line m=
|
line\:m=
|
inverse of X^3
|
inverse\:X^{3}
|
inverse of f(x)=(x+2)^3
|
inverse\:f(x)=(x+2)^{3}
|
inverse of f(x)= 8/(5x-7)
|
inverse\:f(x)=\frac{8}{5x-7}
|
inverse of f(x)=(x+1)/(x+2)
|
inverse\:f(x)=\frac{x+1}{x+2}
|
slope intercept of 4x+2y=2
|
slope\:intercept\:4x+2y=2
|
inverse of e^{x+2}
|
inverse\:e^{x+2}
|
inverse of 7x-2
|
inverse\:7x-2
|
slope intercept of x=2y
|
slope\:intercept\:x=2y
|
inverse of f(x)=sqrt(4-x)+5
|
inverse\:f(x)=\sqrt{4-x}+5
|
inverse of f(x)=1.21x
|
inverse\:f(x)=1.21x
|
intercepts of-log_{2}(3x-5)
|
intercepts\:-\log_{2}(3x-5)
|
intercepts of f(x)=x^2-6x
|
intercepts\:f(x)=x^{2}-6x
|
y=x^2+5
|
y=x^{2}+5
|
range of x^4
|
range\:x^{4}
|
intercepts of 2x^3-4x^2-38x+76
|
intercepts\:2x^{3}-4x^{2}-38x+76
|
slope of ax-w=3
|
slope\:ax-w=3
|
parity f(x)=(8x)/(1-tan(x))
|
parity\:f(x)=\frac{8x}{1-\tan(x)}
|
critical points of x/(x^2+1)
|
critical\:points\:\frac{x}{x^{2}+1}
|
inverse of f(x)=0.5
|
inverse\:f(x)=0.5
|
midpoint (-5,9)(35,18)
|
midpoint\:(-5,9)(35,18)
|
intercepts of f(x)=x^2-6x+5
|
intercepts\:f(x)=x^{2}-6x+5
|
range of (2x+3)/(x+2)
|
range\:\frac{2x+3}{x+2}
|
critical points of x/(x^2-x+1)
|
critical\:points\:\frac{x}{x^{2}-x+1}
|
inverse of log_{5}(x+2)
|
inverse\:\log_{5}(x+2)
|
inverse of f(x)=\sqrt[3]{-x+3}
|
inverse\:f(x)=\sqrt[3]{-x+3}
|
asymptotes of 3/(x^2-16)
|
asymptotes\:\frac{3}{x^{2}-16}
|
range of x^2+x-2
|
range\:x^{2}+x-2
|
domain of 1/(\sqrt[4]{x^2-3x)}
|
domain\:\frac{1}{\sqrt[4]{x^{2}-3x}}
|
intercepts of (x+1)/(2x-1)
|
intercepts\:\frac{x+1}{2x-1}
|
inverse of f(x)=(x-1)^2-6
|
inverse\:f(x)=(x-1)^{2}-6
|
domain of f(x)=(6x)/(sqrt(x+5))
|
domain\:f(x)=\frac{6x}{\sqrt{x+5}}
|
inflection points of f(x)=2x(x+4)^2
|
inflection\:points\:f(x)=2x(x+4)^{2}
|
perpendicular y=3-1/4 x
|
perpendicular\:y=3-\frac{1}{4}x
|
range of y=-3
|
range\:y=-3
|
asymptotes of (-4)/(2x-1)
|
asymptotes\:\frac{-4}{2x-1}
|
inflection points of sqrt(X+3)
|
inflection\:points\:\sqrt{X+3}
|
inflection points of f(x)=x^{4/3}
|
inflection\:points\:f(x)=x^{\frac{4}{3}}
|
inverse of f(x)= 4/x+1
|
inverse\:f(x)=\frac{4}{x}+1
|
domain of f(x)=4x^2-3x+5
|
domain\:f(x)=4x^{2}-3x+5
|
inverse of f(x)=\sqrt[3]{n-3}-2
|
inverse\:f(x)=\sqrt[3]{n-3}-2
|
range of-(x-4)^2+17
|
range\:-(x-4)^{2}+17
|
inverse of y=-8x+16
|
inverse\:y=-8x+16
|
inverse of f(x)=x^2-x,x>= 1/2
|
inverse\:f(x)=x^{2}-x,x\ge\:\frac{1}{2}
|
asymptotes of (-4)/(3x-2)+1
|
asymptotes\:\frac{-4}{3x-2}+1
|
inverse of f(x)=(x-2)/7+8
|
inverse\:f(x)=\frac{x-2}{7}+8
|
domain of y=sqrt(9-x^2)
|
domain\:y=\sqrt{9-x^{2}}
|
range of f(x)=(x-2)^2+2
|
range\:f(x)=(x-2)^{2}+2
|
extreme points of f(x)=x^2+5x-2
|
extreme\:points\:f(x)=x^{2}+5x-2
|