distance (2,7)(-4,-3)
|
distance\:(2,7)(-4,-3)
|
extreme points of f(x)=4-2x^2
|
extreme\:points\:f(x)=4-2x^{2}
|
y=2
|
y=2
|
intercepts of f(x)=(-3x^2-x+3)/(x^2-1)
|
intercepts\:f(x)=\frac{-3x^{2}-x+3}{x^{2}-1}
|
domain of f(x)= 1/(sqrt(4-x^2))
|
domain\:f(x)=\frac{1}{\sqrt{4-x^{2}}}
|
symmetry y=-x^2+10x-23
|
symmetry\:y=-x^{2}+10x-23
|
extreme points of f(x)=x^2-9x+20-ln(x-3)
|
extreme\:points\:f(x)=x^{2}-9x+20-\ln(x-3)
|
inverse of f(x)=-2x-5
|
inverse\:f(x)=-2x-5
|
slope intercept of 3x-2y=-11
|
slope\:intercept\:3x-2y=-11
|
extreme points of f(x)=(1,7)(3,5)
|
extreme\:points\:f(x)=(1,7)(3,5)
|
domain of (2x^2+2x-12)/(x^2+x)
|
domain\:\frac{2x^{2}+2x-12}{x^{2}+x}
|
slope of y-4=0
|
slope\:y-4=0
|
range of f(x)=ln(1/(1+e^x))
|
range\:f(x)=\ln(\frac{1}{1+e^{x}})
|
parity f(x)=2x^5-x^3
|
parity\:f(x)=2x^{5}-x^{3}
|
inverse of f(x)=sin(2x)
|
inverse\:f(x)=\sin(2x)
|
slope of x-2y=1
|
slope\:x-2y=1
|
domain of f(x)=5-8x
|
domain\:f(x)=5-8x
|
domain of (x-6)/(x+6)
|
domain\:\frac{x-6}{x+6}
|
asymptotes of f(x)=x^2-1/x+2
|
asymptotes\:f(x)=x^{2}-\frac{1}{x}+2
|
asymptotes of f(x)=(-5)/(3x+1)
|
asymptotes\:f(x)=\frac{-5}{3x+1}
|
domain of x^2+2x-8
|
domain\:x^{2}+2x-8
|
line (-4,)(5,)
|
line\:(-4,)(5,)
|
slope intercept of y=-12
|
slope\:intercept\:y=-12
|
domain of f(x)=2+sqrt(6+11x)
|
domain\:f(x)=2+\sqrt{6+11x}
|
domain of f(x)=(4x+20)/(x^2-25)
|
domain\:f(x)=\frac{4x+20}{x^{2}-25}
|
inverse of f(x)=3x-12
|
inverse\:f(x)=3x-12
|
domain of f(x)=(x^2)/(x+4)
|
domain\:f(x)=\frac{x^{2}}{x+4}
|
asymptotes of f(x)=(2x-5)/(3x+5)
|
asymptotes\:f(x)=\frac{2x-5}{3x+5}
|
periodicity of f(x)=3sin(x/2)
|
periodicity\:f(x)=3\sin(\frac{x}{2})
|
inverse of f(x)=(x-11)^2+5
|
inverse\:f(x)=(x-11)^{2}+5
|
critical points of-5x^4-x^3+2x^2
|
critical\:points\:-5x^{4}-x^{3}+2x^{2}
|
inverse of 36.5-2.5x
|
inverse\:36.5-2.5x
|
asymptotes of f(x)=(x-2)/(5x-1)
|
asymptotes\:f(x)=\frac{x-2}{5x-1}
|
asymptotes of f(x)=(x^2+7x-7)/(x-2)
|
asymptotes\:f(x)=\frac{x^{2}+7x-7}{x-2}
|
domain of f(x)=16x+30
|
domain\:f(x)=16x+30
|
domain of f(x)=(sqrt(x-1))/(x^2+4)
|
domain\:f(x)=\frac{\sqrt{x-1}}{x^{2}+4}
|
inverse of x/(7x+4)
|
inverse\:\frac{x}{7x+4}
|
inverse of sqrt(x+6)+2
|
inverse\:\sqrt{x+6}+2
|
domain of f(x)= 2/(sqrt(9+4x))
|
domain\:f(x)=\frac{2}{\sqrt{9+4x}}
|
extreme points of f(x)=x^2ln(x/2)
|
extreme\:points\:f(x)=x^{2}\ln(\frac{x}{2})
|
intercepts of y=2x^2+2x-4
|
intercepts\:y=2x^{2}+2x-4
|
domain of f(x)=x-1/18
|
domain\:f(x)=x-\frac{1}{18}
|
range of f(x)=-5/x+2
|
range\:f(x)=-\frac{5}{x}+2
|
shift-2cos(x/4)-2
|
shift\:-2\cos(\frac{x}{4})-2
|
slope of 4y=8x+9
|
slope\:4y=8x+9
|
range of 1/(1-e^{-x)}
|
range\:\frac{1}{1-e^{-x}}
|
range of f(x)=sqrt(8-x)
|
range\:f(x)=\sqrt{8-x}
|
f(x)=(x^2-2x-1)/(x+1)
|
f(x)=\frac{x^{2}-2x-1}{x+1}
|
critical points of (e^x)/x
|
critical\:points\:\frac{e^{x}}{x}
|
range of f(x)= 5/(x^2-9x-22)
|
range\:f(x)=\frac{5}{x^{2}-9x-22}
|
inverse of f(x)=14x^2
|
inverse\:f(x)=14x^{2}
|
domain of tan(2arcsin(x))
|
domain\:\tan(2\arcsin(x))
|
inverse of f(x)= 1/(x+12)
|
inverse\:f(x)=\frac{1}{x+12}
|
line (10,242),(15,364)
|
line\:(10,242),(15,364)
|
parity f(x)=y
|
parity\:f(x)=y
|
periodicity of f(x)=sin((8pi x)/5)
|
periodicity\:f(x)=\sin(\frac{8\pi\:x}{5})
|
domain of (1-e^{x^2})/(1-e^{1-x^2)}
|
domain\:\frac{1-e^{x^{2}}}{1-e^{1-x^{2}}}
|
domain of f(x)= 3/(sqrt(2x-4))
|
domain\:f(x)=\frac{3}{\sqrt{2x-4}}
|
inverse of f(x)=x^6
|
inverse\:f(x)=x^{6}
|
midpoint (3,-2,)(-4,-5)
|
midpoint\:(3,-2,)(-4,-5)
|
amplitude of y=3cos(2x)
|
amplitude\:y=3\cos(2x)
|
inverse of f(x)=5x-6
|
inverse\:f(x)=5x-6
|
inverse of f(x)=3x^3-7
|
inverse\:f(x)=3x^{3}-7
|
parity (2x+1)/(4x^3+5x+7)
|
parity\:\frac{2x+1}{4x^{3}+5x+7}
|
inverse of f(x)= 1/3 x-3
|
inverse\:f(x)=\frac{1}{3}x-3
|
extreme points of 27a^6
|
extreme\:points\:27a^{6}
|
distance (1,5)(-2,2)
|
distance\:(1,5)(-2,2)
|
inverse of f(x)=(5-4x)/(15)
|
inverse\:f(x)=\frac{5-4x}{15}
|
domain of (x^2+2)/(x-2)
|
domain\:\frac{x^{2}+2}{x-2}
|
range of sqrt(x)
|
range\:\sqrt{x}
|
domain of f(x)=-x^2+8x-1
|
domain\:f(x)=-x^{2}+8x-1
|
domain of f(x)=-4sqrt(x-4)
|
domain\:f(x)=-4\sqrt{x-4}
|
midpoint (-2,4)(3,-3)
|
midpoint\:(-2,4)(3,-3)
|
parallel 2x-5y=15(1/2 ,-3/4)
|
parallel\:2x-5y=15(\frac{1}{2},-\frac{3}{4})
|
domain of (-7(4+x))/((2^x-8)(-1-3x)^2)
|
domain\:\frac{-7(4+x)}{(2^{x}-8)(-1-3x)^{2}}
|
domain of (5x)/(x^2-3x-4)
|
domain\:\frac{5x}{x^{2}-3x-4}
|
perpendicular y=20-3x
|
perpendicular\:y=20-3x
|
critical points of ln(7-6x^2)
|
critical\:points\:\ln(7-6x^{2})
|
inverse of (x+1)/(x-4)
|
inverse\:\frac{x+1}{x-4}
|
line (5,-2)(1,2)
|
line\:(5,-2)(1,2)
|
inverse of f(x)=(x+18)/(x-17)
|
inverse\:f(x)=\frac{x+18}{x-17}
|
line (2001,17.6)(2002,18.75)
|
line\:(2001,17.6)(2002,18.75)
|
domain of f(x)= x/(x+4)
|
domain\:f(x)=\frac{x}{x+4}
|
domain of f(x)=sqrt(8-x^2)
|
domain\:f(x)=\sqrt{8-x^{2}}
|
inverse of f(x)=(7x-2)/(x+9)
|
inverse\:f(x)=\frac{7x-2}{x+9}
|
domain of f(x)=|x|-3
|
domain\:f(x)=|x|-3
|
range of ((2sqrt(x)+x)^2)/(5+xsqrt(x))
|
range\:\frac{(2\sqrt{x}+x)^{2}}{5+x\sqrt{x}}
|
symmetry 4x-x^2+12
|
symmetry\:4x-x^{2}+12
|
domain of f(x)=(x^2+x)/(x^2-7)
|
domain\:f(x)=\frac{x^{2}+x}{x^{2}-7}
|
extreme points of f(x)=2x^2-1
|
extreme\:points\:f(x)=2x^{2}-1
|
inverse of y=5x^2-20
|
inverse\:y=5x^{2}-20
|
asymptotes of f(x)=(x+1)/(x-4)
|
asymptotes\:f(x)=\frac{x+1}{x-4}
|
domain of sqrt(x^2)
|
domain\:\sqrt{x^{2}}
|
range of 3/(sqrt(9-x^2))
|
range\:\frac{3}{\sqrt{9-x^{2}}}
|
domain of (3x+2)/(sqrt(x^2-7x))
|
domain\:\frac{3x+2}{\sqrt{x^{2}-7x}}
|
inverse of f(y)=e^x
|
inverse\:f(y)=e^{x}
|
slope of-225a+850
|
slope\:-225a+850
|
line (0,0),(1,2)
|
line\:(0,0),(1,2)
|
midpoint (2,-1)(4,-3)
|
midpoint\:(2,-1)(4,-3)
|
domain of f(x)=10(2x-4)^2+3
|
domain\:f(x)=10(2x-4)^{2}+3
|