range of f(x)=3^x-1
|
range\:f(x)=3^{x}-1
|
midpoint (1,9)(5,-3)
|
midpoint\:(1,9)(5,-3)
|
slope intercept of x-y=3
|
slope\:intercept\:x-y=3
|
periodicity of f(x)=2cos(2pi x)
|
periodicity\:f(x)=2\cos(2\pi\:x)
|
inverse of 1/(4(\frac{(1-x)){x})+1}
|
inverse\:\frac{1}{4(\frac{(1-x)}{x})+1}
|
inverse of x-1
|
inverse\:x-1
|
domain of 5(x+2)^2-3
|
domain\:5(x+2)^{2}-3
|
intercepts of (2x^2-5x-2)/(x-2)
|
intercepts\:\frac{2x^{2}-5x-2}{x-2}
|
domain of f(x)=(x^3+3x^2)/(x^2-7x+12)
|
domain\:f(x)=\frac{x^{3}+3x^{2}}{x^{2}-7x+12}
|
domain of f(x)= 6/(1-e^x)
|
domain\:f(x)=\frac{6}{1-e^{x}}
|
y=x^2+2x+1
|
y=x^{2}+2x+1
|
extreme points of f(x)=x^4-7x^3
|
extreme\:points\:f(x)=x^{4}-7x^{3}
|
asymptotes of f(x)=(2/5)^x
|
asymptotes\:f(x)=(\frac{2}{5})^{x}
|
intercepts of y=-3/4 x-2
|
intercepts\:y=-\frac{3}{4}x-2
|
range of 1+8x-2x^3
|
range\:1+8x-2x^{3}
|
domain of (sqrt(x-2))^2+3
|
domain\:(\sqrt{x-2})^{2}+3
|
shift-2cos(x/3-(pi)/9)-3
|
shift\:-2\cos(\frac{x}{3}-\frac{\pi}{9})-3
|
shift f(x)=-3cos(2x+3)
|
shift\:f(x)=-3\cos(2x+3)
|
domain of f(x)= 1/(x^2-2x)
|
domain\:f(x)=\frac{1}{x^{2}-2x}
|
asymptotes of f(x)=4-2/(t^2)
|
asymptotes\:f(x)=4-\frac{2}{t^{2}}
|
domain of f(x)=3x^2+2x-3
|
domain\:f(x)=3x^{2}+2x-3
|
inverse of f(x)=(3x)/2
|
inverse\:f(x)=\frac{3x}{2}
|
inverse of f(x)=-x^2+3
|
inverse\:f(x)=-x^{2}+3
|
asymptotes of f(x)=2tan(4x-32)
|
asymptotes\:f(x)=2\tan(4x-32)
|
asymptotes of f(x)=sec(pi x-(pi)/4)
|
asymptotes\:f(x)=\sec(\pi\:x-\frac{\pi}{4})
|
domain of (x-2)/((x-2)^2)
|
domain\:\frac{x-2}{(x-2)^{2}}
|
domain of f(x)=x^2e^{-x}
|
domain\:f(x)=x^{2}e^{-x}
|
midpoint (-1,0)(7,0)
|
midpoint\:(-1,0)(7,0)
|
sin^2
|
\sin^{2}
|
slope of = 9/5
|
slope\:=\frac{9}{5}
|
domain of f(x)= 1/3 x-4
|
domain\:f(x)=\frac{1}{3}x-4
|
intercepts of f(x)=3x^2-3x-6
|
intercepts\:f(x)=3x^{2}-3x-6
|
range of f(x)=x^2-4x-3,x<= 2
|
range\:f(x)=x^{2}-4x-3,x\le\:2
|
inverse of f(x)= 3/(x-1)-2
|
inverse\:f(x)=\frac{3}{x-1}-2
|
asymptotes of f(x)=(7+x^4)/(x^2-x^4)
|
asymptotes\:f(x)=\frac{7+x^{4}}{x^{2}-x^{4}}
|
perpendicular y=-2/5 x+1
|
perpendicular\:y=-\frac{2}{5}x+1
|
slope intercept of 2x-2y=-10
|
slope\:intercept\:2x-2y=-10
|
line m=0,\at (2,8)
|
line\:m=0,\at\:(2,8)
|
periodicity of f(x)=2sin(2pi x)+1
|
periodicity\:f(x)=2\sin(2\pi\:x)+1
|
domain of f(x)=sqrt((\sqrt{x-5))-5}
|
domain\:f(x)=\sqrt{(\sqrt{x-5})-5}
|
parity f(x)=sqrt(6)x
|
parity\:f(x)=\sqrt{6}x
|
asymptotes of f(x)=(x^2-81)/(x+9)
|
asymptotes\:f(x)=\frac{x^{2}-81}{x+9}
|
inverse of f(x)=9x-4
|
inverse\:f(x)=9x-4
|
range of g(x)=sqrt(x)
|
range\:g(x)=\sqrt{x}
|
domain of (8x)/(x+5)
|
domain\:\frac{8x}{x+5}
|
intercepts of f(x)=-2x^2-28x-96
|
intercepts\:f(x)=-2x^{2}-28x-96
|
asymptotes of f(x)=(x+6)/(2x^2+9x-18)
|
asymptotes\:f(x)=\frac{x+6}{2x^{2}+9x-18}
|
domain of f(x)=(11)/x
|
domain\:f(x)=\frac{11}{x}
|
domain of f(x)= 1/(sqrt(x-2))
|
domain\:f(x)=\frac{1}{\sqrt{x-2}}
|
range of f(x)=(2x^2+2x-12)/(x^2+x)
|
range\:f(x)=\frac{2x^{2}+2x-12}{x^{2}+x}
|
inverse of f(x)= 1/2+1
|
inverse\:f(x)=\frac{1}{2}+1
|
inflection points of f(x)=17x^4-102x^2
|
inflection\:points\:f(x)=17x^{4}-102x^{2}
|
critical points of f(x)=-8x^3+24x+9
|
critical\:points\:f(x)=-8x^{3}+24x+9
|
asymptotes of (3(x-2))/(2(x-2))
|
asymptotes\:\frac{3(x-2)}{2(x-2)}
|
inverse of f(x)=\sqrt[3]{x+1}-2
|
inverse\:f(x)=\sqrt[3]{x+1}-2
|
domain of f(x)=-5(x+1)^2-5
|
domain\:f(x)=-5(x+1)^{2}-5
|
domain of x+sqrt(18+3x)
|
domain\:x+\sqrt{18+3x}
|
inverse of 1/(x^2)
|
inverse\:\frac{1}{x^{2}}
|
monotone intervals f(x)=(x-6)^3
|
monotone\:intervals\:f(x)=(x-6)^{3}
|
inverse of f(x)=sqrt(2x-9)
|
inverse\:f(x)=\sqrt{2x-9}
|
inflection points of-x^3+9x^2-27x+8
|
inflection\:points\:-x^{3}+9x^{2}-27x+8
|
midpoint (5,9)(10,-1)
|
midpoint\:(5,9)(10,-1)
|
extreme points of f(x)=x^6-3x^5
|
extreme\:points\:f(x)=x^{6}-3x^{5}
|
extreme points of f(x)=x^2-3x+1
|
extreme\:points\:f(x)=x^{2}-3x+1
|
midpoint (5,5)(-10,-2)
|
midpoint\:(5,5)(-10,-2)
|
range of f(x)=sqrt(1-x^2)
|
range\:f(x)=\sqrt{1-x^{2}}
|
inverse of y=x^2+1
|
inverse\:y=x^{2}+1
|
parity f(x)=x^2tan(x)
|
parity\:f(x)=x^{2}\tan(x)
|
asymptotes of f(x)=((2x^2-2))/(x^2-9)
|
asymptotes\:f(x)=\frac{(2x^{2}-2)}{x^{2}-9}
|
domain of (20)/((x+5)^2)
|
domain\:\frac{20}{(x+5)^{2}}
|
range of (3x^2-12x+13)/(x^2-4x+4)
|
range\:\frac{3x^{2}-12x+13}{x^{2}-4x+4}
|
slope of y=-125x+850
|
slope\:y=-125x+850
|
intercepts of s^2+2s+2
|
intercepts\:s^{2}+2s+2
|
intercepts of x^3-40x^2+400x
|
intercepts\:x^{3}-40x^{2}+400x
|
range of 3sqrt(x-1)
|
range\:3\sqrt{x-1}
|
intercepts of f(x)=(x-4)/(3x-x^2)
|
intercepts\:f(x)=\frac{x-4}{3x-x^{2}}
|
inverse of x^2-10x
|
inverse\:x^{2}-10x
|
line (1/6 ,-1/3),(5/6 ,3)
|
line\:(\frac{1}{6},-\frac{1}{3}),(\frac{5}{6},3)
|
line (4,-3),(-5,2)
|
line\:(4,-3),(-5,2)
|
inverse of (2x-3)^2
|
inverse\:(2x-3)^{2}
|
domain of 3x^2-x-2
|
domain\:3x^{2}-x-2
|
inverse of f(x)=((x+3))/(x+10)
|
inverse\:f(x)=\frac{(x+3)}{x+10}
|
inverse of f(x)=sqrt(-x+19)
|
inverse\:f(x)=\sqrt{-x+19}
|
inverse of f(x)=sqrt(-x)
|
inverse\:f(x)=\sqrt{-x}
|
slope intercept of 5x-7y=7x+14
|
slope\:intercept\:5x-7y=7x+14
|
inverse of (9x-4)/(5-x)
|
inverse\:\frac{9x-4}{5-x}
|
intercepts of f(x)=(x^2-2x-3)/x
|
intercepts\:f(x)=\frac{x^{2}-2x-3}{x}
|
range of f(x)=20.4
|
range\:f(x)=20.4
|
parallel y= 2/3 23x+1
|
parallel\:y=\frac{2}{3}23x+1
|
range of X^2-1
|
range\:X^{2}-1
|
critical points of f(x)=x^2+(16)/x
|
critical\:points\:f(x)=x^{2}+\frac{16}{x}
|
domain of sqrt(t)-3
|
domain\:\sqrt{t}-3
|
range of f(x)=sqrt(x^2+x-6)
|
range\:f(x)=\sqrt{x^{2}+x-6}
|
inverse of f(x)=y=3x+1
|
inverse\:f(x)=y=3x+1
|
inverse of f(x)= 3/(2x)
|
inverse\:f(x)=\frac{3}{2x}
|
slope intercept of 3x+2y=-6
|
slope\:intercept\:3x+2y=-6
|
slope intercept of 5x-2y=10
|
slope\:intercept\:5x-2y=10
|
slope intercept of 2x+5y=-3
|
slope\:intercept\:2x+5y=-3
|
extreme points of f(x)=x^3+12x^2-27x+11
|
extreme\:points\:f(x)=x^{3}+12x^{2}-27x+11
|
inverse of f(x)=(e^x)/(e^x+1)
|
inverse\:f(x)=\frac{e^{x}}{e^{x}+1}
|