domain of f(x)=arccos(2x)
|
domain\:f(x)=\arccos(2x)
|
slope intercept of 5x+8y=16
|
slope\:intercept\:5x+8y=16
|
extreme points of f(x)=-x^2-6x+1
|
extreme\:points\:f(x)=-x^{2}-6x+1
|
slope of y=-4x+1
|
slope\:y=-4x+1
|
inverse of f(x)=(x-1)^2-5
|
inverse\:f(x)=(x-1)^{2}-5
|
extreme points of 3x^{2/3}-2x
|
extreme\:points\:3x^{\frac{2}{3}}-2x
|
domain of 4/(9+x)
|
domain\:\frac{4}{9+x}
|
range of (3x^2-18x+24)/(x^2-4x)
|
range\:\frac{3x^{2}-18x+24}{x^{2}-4x}
|
domain of f(x)=4cos(x-(pi)/3)+2
|
domain\:f(x)=4\cos(x-\frac{\pi}{3})+2
|
domain of (x+3)/(x^2-4)
|
domain\:\frac{x+3}{x^{2}-4}
|
range of f(x)=x^2-3x-4
|
range\:f(x)=x^{2}-3x-4
|
extreme points of f(x)=x^2+((26-2x)^2)/9
|
extreme\:points\:f(x)=x^{2}+\frac{(26-2x)^{2}}{9}
|
critical points of f(x)=1
|
critical\:points\:f(x)=1
|
extreme points of f(x)=(3x)/(9-x^2)
|
extreme\:points\:f(x)=\frac{3x}{9-x^{2}}
|
inverse of f(x)=(x+5)^2-2
|
inverse\:f(x)=(x+5)^{2}-2
|
extreme points of f(x)=3xsqrt(5-x)
|
extreme\:points\:f(x)=3x\sqrt{5-x}
|
extreme points of y=-5x-e^{-5x}
|
extreme\:points\:y=-5x-e^{-5x}
|
periodicity of f(x)=2sin(4x)
|
periodicity\:f(x)=2\sin(4x)
|
amplitude of y=-2sin(3x)
|
amplitude\:y=-2\sin(3x)
|
intercepts of f(x)=x(11-2x)(13-2x)
|
intercepts\:f(x)=x(11-2x)(13-2x)
|
range of f(x)=e^{x+1}-5
|
range\:f(x)=e^{x+1}-5
|
critical points of f(x)=sqrt(4-x^2)
|
critical\:points\:f(x)=\sqrt{4-x^{2}}
|
asymptotes of f(x)=(5x+4)/(2x^2-4x-16)
|
asymptotes\:f(x)=\frac{5x+4}{2x^{2}-4x-16}
|
symmetry 5x^2-2x+4
|
symmetry\:5x^{2}-2x+4
|
domain of f(x)=x^3-3x^2+2x+5
|
domain\:f(x)=x^{3}-3x^{2}+2x+5
|
intercepts of y=-2x^2+4x-3
|
intercepts\:y=-2x^{2}+4x-3
|
domain of f(x)=-4x-5
|
domain\:f(x)=-4x-5
|
domain of f(x)=2+sqrt((x^3)/(x+5))
|
domain\:f(x)=2+\sqrt{\frac{x^{3}}{x+5}}
|
domain of f(x)= 1/3
|
domain\:f(x)=\frac{1}{3}
|
perpendicular y=(-3)/7 x+4(9,8)
|
perpendicular\:y=\frac{-3}{7}x+4(9,8)
|
intercepts of y= 2/3 x
|
intercepts\:y=\frac{2}{3}x
|
domain of 2+4^{x-2}
|
domain\:2+4^{x-2}
|
perpendicular y=-x+2
|
perpendicular\:y=-x+2
|
domain of f(x)=24x^3+(12)/x
|
domain\:f(x)=24x^{3}+\frac{12}{x}
|
domain of x+5
|
domain\:x+5
|
domain of f(x)= 1/x
|
domain\:f(x)=\frac{1}{x}
|
parallel x+2y=-10
|
parallel\:x+2y=-10
|
range of (x^2-9x)/(x^2-81)
|
range\:\frac{x^{2}-9x}{x^{2}-81}
|
domain of f(x)=(x+7)/(x^2+4x-21)
|
domain\:f(x)=\frac{x+7}{x^{2}+4x-21}
|
inverse of f(x)=((x+20))/(x-16)
|
inverse\:f(x)=\frac{(x+20)}{x-16}
|
domain of f(x)=(-1)/(2sqrt(7-x))
|
domain\:f(x)=\frac{-1}{2\sqrt{7-x}}
|
inverse of f(x)= 1/(x-3)+1
|
inverse\:f(x)=\frac{1}{x-3}+1
|
inverse of f(x)=6x-9
|
inverse\:f(x)=6x-9
|
inverse of f(x)=e^x
|
inverse\:f(x)=e^{x}
|
domain of f(x)= 1/2 sqrt(4+x^2)
|
domain\:f(x)=\frac{1}{2}\sqrt{4+x^{2}}
|
midpoint (-1,7)(0,8)
|
midpoint\:(-1,7)(0,8)
|
critical points of f(x)=x^3-12x+1
|
critical\:points\:f(x)=x^{3}-12x+1
|
line 3x-y=-2
|
line\:3x-y=-2
|
midpoint (-1,7)(3,-2)
|
midpoint\:(-1,7)(3,-2)
|
domain of f(x)= 1/(sqrt(x^2-3x-4))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-3x-4}}
|
asymptotes of f(x)=(3x)/(x+5)
|
asymptotes\:f(x)=\frac{3x}{x+5}
|
domain of f(x)=\sqrt[3]{1-2x}
|
domain\:f(x)=\sqrt[3]{1-2x}
|
domain of f(x)=sqrt(121-x^2)
|
domain\:f(x)=\sqrt{121-x^{2}}
|
parallel y=x+1
|
parallel\:y=x+1
|
asymptotes of f(x)=(x^2+7x+10)/(x^2-25)
|
asymptotes\:f(x)=\frac{x^{2}+7x+10}{x^{2}-25}
|
line (3,6)(5,5)
|
line\:(3,6)(5,5)
|
parity y=x(x^2+1)(x^2+3)
|
parity\:y=x(x^{2}+1)(x^{2}+3)
|
parity ((9^n+27^n)/(3^n+9^n))^{1/n}
|
parity\:(\frac{9^{n}+27^{n}}{3^{n}+9^{n}})^{\frac{1}{n}}
|
inverse of y= 3/4 x-1
|
inverse\:y=\frac{3}{4}x-1
|
domain of f(x)=(3x+9)/x
|
domain\:f(x)=\frac{3x+9}{x}
|
ln^2(x)
|
\ln^{2}(x)
|
inverse of f(x)=5-6e^x
|
inverse\:f(x)=5-6e^{x}
|
parity (9x)/(16-x^2)
|
parity\:\frac{9x}{16-x^{2}}
|
inverse of f(x)= 8/(x-2)
|
inverse\:f(x)=\frac{8}{x-2}
|
amplitude of 3sin(2x)
|
amplitude\:3\sin(2x)
|
extreme points of f(x)=x^2+(400)/x
|
extreme\:points\:f(x)=x^{2}+\frac{400}{x}
|
range of f(x)=sqrt(x+3)-4
|
range\:f(x)=\sqrt{x+3}-4
|
domain of f(x)=-8x+7
|
domain\:f(x)=-8x+7
|
inverse of y=3log_{2}(x-4)
|
inverse\:y=3\log_{2}(x-4)
|
shift sin(2x-pi)
|
shift\:\sin(2x-\pi)
|
domain of f(x)=ln(2*x+1)
|
domain\:f(x)=\ln(2\cdot\:x+1)
|
domain of f(x)=(x-4)/(x+6)
|
domain\:f(x)=\frac{x-4}{x+6}
|
y=x^2+x-2
|
y=x^{2}+x-2
|
domain of e^{-5t}
|
domain\:e^{-5t}
|
slope of 4x+6y=12
|
slope\:4x+6y=12
|
critical points of x^3-3x+2
|
critical\:points\:x^{3}-3x+2
|
inverse of f(x)=1+sqrt(x+1)
|
inverse\:f(x)=1+\sqrt{x+1}
|
inverse of f(x)=9x^3+7
|
inverse\:f(x)=9x^{3}+7
|
inverse of f(x)= 1/(x^2-1)
|
inverse\:f(x)=\frac{1}{x^{2}-1}
|
critical points of ln(x)\div x^5
|
critical\:points\:\ln(x)\div\:x^{5}
|
domain of f(x)=ln(((x+1))/(x-1))
|
domain\:f(x)=\ln(\frac{(x+1)}{x-1})
|
domain of f(x)= 1/(6(sqrt(2x+16))-12)
|
domain\:f(x)=\frac{1}{6(\sqrt{2x+16})-12}
|
parity (x/(tan(x)))
|
parity\:(\frac{x}{\tan(x)})
|
domain of f(x)=(2-x)/(4(x-5))
|
domain\:f(x)=\frac{2-x}{4(x-5)}
|
parity (2x)/(x^2-1)
|
parity\:\frac{2x}{x^{2}-1}
|
perpendicular 2x+3y=9
|
perpendicular\:2x+3y=9
|
domain of 1/(x^2+x+3)
|
domain\:\frac{1}{x^{2}+x+3}
|
domain of (sqrt(4x))/(x+4)
|
domain\:\frac{\sqrt{4x}}{x+4}
|
slope intercept of x+3y=8
|
slope\:intercept\:x+3y=8
|
parallel 18x+15y=-90
|
parallel\:18x+15y=-90
|
y=2x+4
|
y=2x+4
|
amplitude of 4sin(pi x)
|
amplitude\:4\sin(\pi\:x)
|
critical points of f(x)=10te^{3-t^2}
|
critical\:points\:f(x)=10te^{3-t^{2}}
|
amplitude of-6cos(x)
|
amplitude\:-6\cos(x)
|
inverse of f(x)=10x^2
|
inverse\:f(x)=10x^{2}
|
inverse of f(x)=(2x)/(1-x)
|
inverse\:f(x)=\frac{2x}{1-x}
|
inverse of f(x)=((2x+1))/3
|
inverse\:f(x)=\frac{(2x+1)}{3}
|
parity f(x)=-x^2-3x-1
|
parity\:f(x)=-x^{2}-3x-1
|
range of f(x)=(x^2-2x+4)/(x-2)
|
range\:f(x)=\frac{x^{2}-2x+4}{x-2}
|
asymptotes of-sqrt(x+2)
|
asymptotes\:-\sqrt{x+2}
|