range of ln(x-4)
|
range\:\ln(x-4)
|
parity 7xe^xcsc(x)
|
parity\:7xe^{x}\csc(x)
|
range of 4/(x^2)
|
range\:\frac{4}{x^{2}}
|
inverse of f(x)= 1/(x-8)
|
inverse\:f(x)=\frac{1}{x-8}
|
extreme points of x^3-9x^2+15x+3
|
extreme\:points\:x^{3}-9x^{2}+15x+3
|
inverse of f(x)=2^{x+6}
|
inverse\:f(x)=2^{x+6}
|
inverse of f(x)=2x+2/x-4
|
inverse\:f(x)=2x+\frac{2}{x}-4
|
inverse of f(x)= 2/3 x+10/3
|
inverse\:f(x)=\frac{2}{3}x+\frac{10}{3}
|
inverse of (sqrt(x))/x
|
inverse\:\frac{\sqrt{x}}{x}
|
inverse of f(x)=4x+2
|
inverse\:f(x)=4x+2
|
parity 4x^6e^{-3x}-3x^7e^{-3x}
|
parity\:4x^{6}e^{-3x}-3x^{7}e^{-3x}
|
midpoint (3,-1)(8,-6)
|
midpoint\:(3,-1)(8,-6)
|
shift f(x)=cos(x+pi)-2
|
shift\:f(x)=\cos(x+\pi)-2
|
slope of 30x+10y=21
|
slope\:30x+10y=21
|
domain of =(5-x)/(x(x-3))
|
domain\:=\frac{5-x}{x(x-3)}
|
inverse of f(x)=(7-8x)^2
|
inverse\:f(x)=(7-8x)^{2}
|
domain of \sqrt[3]{x-12}
|
domain\:\sqrt[3]{x-12}
|
midpoint (2,110)(1.9,118)
|
midpoint\:(2,110)(1.9,118)
|
intercepts of f(x)=-x+3y=2
|
intercepts\:f(x)=-x+3y=2
|
line m=-1/3 ,\at (3,2)
|
line\:m=-\frac{1}{3},\at\:(3,2)
|
range of log_{5}(x)
|
range\:\log_{5}(x)
|
midpoint (8,2)(4,-8)
|
midpoint\:(8,2)(4,-8)
|
inverse of f(x)=sqrt(x)-1
|
inverse\:f(x)=\sqrt{x}-1
|
inverse of f(x)=-2(x+2)^5
|
inverse\:f(x)=-2(x+2)^{5}
|
domain of f(x)=((x+1))/(x^2-5x+6)
|
domain\:f(x)=\frac{(x+1)}{x^{2}-5x+6}
|
inverse of f(x)= 1/((x-5))
|
inverse\:f(x)=\frac{1}{(x-5)}
|
inverse of f(x)=(x-2)^3+8
|
inverse\:f(x)=(x-2)^{3}+8
|
intercepts of f(4)=2x^2+4x+8
|
intercepts\:f(4)=2x^{2}+4x+8
|
inverse of f(x)=((3x-7))/(x+1)
|
inverse\:f(x)=\frac{(3x-7)}{x+1}
|
inverse of f(x)=x-1/2 x^2
|
inverse\:f(x)=x-\frac{1}{2}x^{2}
|
line (0,)(-1,)
|
line\:(0,)(-1,)
|
x+3
|
x+3
|
shift-3sin(2pi x+4)
|
shift\:-3\sin(2\pi\:x+4)
|
inverse of 6sqrt(d)
|
inverse\:6\sqrt{d}
|
extreme points of x^3-3x
|
extreme\:points\:x^{3}-3x
|
domain of f(x)=x^2-9,x<= 0
|
domain\:f(x)=x^{2}-9,x\le\:0
|
domain of f(x)=(y+9)/(y^2-9y)
|
domain\:f(x)=\frac{y+9}{y^{2}-9y}
|
shift f(x)=-6cos(2pi x)+3
|
shift\:f(x)=-6\cos(2\pi\:x)+3
|
inverse of arctan(x)
|
inverse\:\arctan(x)
|
intercepts of ((x-4)(x-3))/(x+3)
|
intercepts\:\frac{(x-4)(x-3)}{x+3}
|
critical points of y=6x^3+8x^2-5x+5
|
critical\:points\:y=6x^{3}+8x^{2}-5x+5
|
intercepts of f(x)=(x^2-2x-24)/(x-8)
|
intercepts\:f(x)=\frac{x^{2}-2x-24}{x-8}
|
domain of f(x)=sqrt(1/x+2)
|
domain\:f(x)=\sqrt{\frac{1}{x}+2}
|
monotone intervals f(x)=(5-x)(2x-3)
|
monotone\:intervals\:f(x)=(5-x)(2x-3)
|
inverse of f(x)=(x^7)/7+2
|
inverse\:f(x)=\frac{x^{7}}{7}+2
|
inverse of f(9)=
|
inverse\:f(9)=
|
inverse of f(x)= 1/3 x+4
|
inverse\:f(x)=\frac{1}{3}x+4
|
domain of 4x+9
|
domain\:4x+9
|
range of f(x)=sqrt(4x-2)
|
range\:f(x)=\sqrt{4x-2}
|
slope of y=5-8x
|
slope\:y=5-8x
|
domain of f(x)=y
|
domain\:f(x)=y
|
slope of x+7=y
|
slope\:x+7=y
|
slope intercept of-3(1,-2)
|
slope\:intercept\:-3(1,-2)
|
intercepts of f(x)=-6
|
intercepts\:f(x)=-6
|
perpendicular x-8y-5=0
|
perpendicular\:x-8y-5=0
|
intercepts of f(x)=(x-7)/(x^2-49)
|
intercepts\:f(x)=\frac{x-7}{x^{2}-49}
|
line (1,-8)\land (-1,8)
|
line\:(1,-8)\land\:(-1,8)
|
extreme points of f(x)=2x^3-21x^2+60x
|
extreme\:points\:f(x)=2x^{3}-21x^{2}+60x
|
critical points of 3log_{1/3}(x)+2
|
critical\:points\:3\log_{\frac{1}{3}}(x)+2
|
slope intercept of 4x+y=1
|
slope\:intercept\:4x+y=1
|
perpendicular-2x+3
|
perpendicular\:-2x+3
|
domain of f(x)= x/(x^2-|x|)
|
domain\:f(x)=\frac{x}{x^{2}-|x|}
|
intercepts of f(x)=x^2(x-4)<= 0
|
intercepts\:f(x)=x^{2}(x-4)\le\:0
|
extreme points of f(x)=2x^3-54x
|
extreme\:points\:f(x)=2x^{3}-54x
|
parity x^2+1
|
parity\:x^{2}+1
|
domain of f(x)= 1/(\sqrt[4]{x^2-5x)}
|
domain\:f(x)=\frac{1}{\sqrt[4]{x^{2}-5x}}
|
extreme points of sec(x)
|
extreme\:points\:\sec(x)
|
inverse of f(x)=log_{3}(x-9)
|
inverse\:f(x)=\log_{3}(x-9)
|
intercepts of f(x)=x-3=y
|
intercepts\:f(x)=x-3=y
|
critical points of 2x^3-3x^2-36x
|
critical\:points\:2x^{3}-3x^{2}-36x
|
slope of x=-1
|
slope\:x=-1
|
domain of f(x)= x/(x+3)
|
domain\:f(x)=\frac{x}{x+3}
|
domain of sqrt(x-1)
|
domain\:\sqrt{x-1}
|
inflection points of y= 1/(x^2)-1/x
|
inflection\:points\:y=\frac{1}{x^{2}}-\frac{1}{x}
|
domain of (x-2)/(x^2-4)
|
domain\:\frac{x-2}{x^{2}-4}
|
inflection points of x^2ln(x/4)
|
inflection\:points\:x^{2}\ln(\frac{x}{4})
|
domain of cot(sin^{-1}(x))
|
domain\:\cot(\sin^{-1}(x))
|
domain of (5x)/(3+2x)
|
domain\:\frac{5x}{3+2x}
|
amplitude of y=1.5sin(4x)
|
amplitude\:y=1.5\sin(4x)
|
domain of f(x)= 6/(x+8)
|
domain\:f(x)=\frac{6}{x+8}
|
critical points of 1-e^{-6t}-2.31t
|
critical\:points\:1-e^{-6t}-2.31t
|
domain of x/(1-x)
|
domain\:\frac{x}{1-x}
|
domain of y=sqrt(x-5)
|
domain\:y=\sqrt{x-5}
|
extreme points of 2x^3-24x
|
extreme\:points\:2x^{3}-24x
|
monotone intervals f(x)= 1/3 x^3-1/2 x^2
|
monotone\:intervals\:f(x)=\frac{1}{3}x^{3}-\frac{1}{2}x^{2}
|
domain of f(x)=0.2x+45
|
domain\:f(x)=0.2x+45
|
intercepts of (-5x+5)/(3x+7)
|
intercepts\:\frac{-5x+5}{3x+7}
|
critical points of (2x^3+3x^2-12x+4)/4-6
|
critical\:points\:\frac{2x^{3}+3x^{2}-12x+4}{4}-6
|
asymptotes of f(x)=((x^2+1))/(x-1)
|
asymptotes\:f(x)=\frac{(x^{2}+1)}{x-1}
|
slope of y+4x=2
|
slope\:y+4x=2
|
domain of f(x)=2x^2+9x
|
domain\:f(x)=2x^{2}+9x
|
range of f(x)= 1/(sqrt(x-3))
|
range\:f(x)=\frac{1}{\sqrt{x-3}}
|
asymptotes of f(1)=(x^2-1)/(x-1)
|
asymptotes\:f(1)=\frac{x^{2}-1}{x-1}
|
domain of f(x)=(-8)/(x+7)
|
domain\:f(x)=\frac{-8}{x+7}
|
inverse of f(x)=-7x+3
|
inverse\:f(x)=-7x+3
|
parity f(x)=-6x^5+7x^3
|
parity\:f(x)=-6x^{5}+7x^{3}
|
asymptotes of (3+x^4)/(x^2-x^4)
|
asymptotes\:\frac{3+x^{4}}{x^{2}-x^{4}}
|
domain of f(x)= 1/(sqrt(x^2+1))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}+1}}
|
range of 1/(x^2+4)
|
range\:\frac{1}{x^{2}+4}
|
inverse of f(x)=sqrt(x/5)
|
inverse\:f(x)=\sqrt{\frac{x}{5}}
|