domain of f(x)=(x^2-9)/(x^2+6)
|
domain\:f(x)=\frac{x^{2}-9}{x^{2}+6}
|
critical points of y=x(x-3)^2
|
critical\:points\:y=x(x-3)^{2}
|
asymptotes of f(x)=(x+4)/(x+3)
|
asymptotes\:f(x)=\frac{x+4}{x+3}
|
cosh^2(x)
|
\cosh^{2}(x)
|
domain of f(x)=(2x-6)/(x^2+4x-5)
|
domain\:f(x)=\frac{2x-6}{x^{2}+4x-5}
|
domain of f(x)=(x+8)/(x^2-9)
|
domain\:f(x)=\frac{x+8}{x^{2}-9}
|
symmetry y-5=3x^2-6
|
symmetry\:y-5=3x^{2}-6
|
parity f(x)=\sqrt[5]{x}
|
parity\:f(x)=\sqrt[5]{x}
|
domain of g(x)=\sqrt[3]{x}
|
domain\:g(x)=\sqrt[3]{x}
|
distance (-6,-3)(8,5)
|
distance\:(-6,-3)(8,5)
|
domain of f(x)=log_{x}(x-4)
|
domain\:f(x)=\log_{x}(x-4)
|
slope of 2x+y=-6
|
slope\:2x+y=-6
|
inverse of (-3x+5)/(7x+4)
|
inverse\:\frac{-3x+5}{7x+4}
|
range of e^{sqrt(x+x^2)}
|
range\:e^{\sqrt{x+x^{2}}}
|
domain of 1/(sqrt(11-t))
|
domain\:\frac{1}{\sqrt{11-t}}
|
extreme points of y=x-1/x
|
extreme\:points\:y=x-\frac{1}{x}
|
asymptotes of (x-2)/(sqrt(x)-1)=
|
asymptotes\:\frac{x-2}{\sqrt{x}-1}=
|
asymptotes of f(x)=-2tan(2x)
|
asymptotes\:f(x)=-2\tan(2x)
|
monotone intervals f(x)=sqrt(x)
|
monotone\:intervals\:f(x)=\sqrt{x}
|
distance (-3,8)(9,-2)
|
distance\:(-3,8)(9,-2)
|
range of f(x)=17-x^4
|
range\:f(x)=17-x^{4}
|
slope of 4x=5y
|
slope\:4x=5y
|
line (1,)(-1,)
|
line\:(1,)(-1,)
|
monotone intervals f(x)=2x^2-3x
|
monotone\:intervals\:f(x)=2x^{2}-3x
|
inverse of-2
|
inverse\:-2
|
slope of 5/2 y=-7/9 x
|
slope\:\frac{5}{2}y=-\frac{7}{9}x
|
slope intercept of x+2y=5
|
slope\:intercept\:x+2y=5
|
inverse of y=(50e^t)/(2e^{t-1)}
|
inverse\:y=\frac{50e^{t}}{2e^{t-1}}
|
domain of f(x)=sqrt(1-x^2)-sqrt(x^2-1)
|
domain\:f(x)=\sqrt{1-x^{2}}-\sqrt{x^{2}-1}
|
amplitude of y=-3sin(x)
|
amplitude\:y=-3\sin(x)
|
asymptotes of f(x)=(2x^2)/(x-7)
|
asymptotes\:f(x)=\frac{2x^{2}}{x-7}
|
inverse of f(x)=(x-2)/(3x+7)
|
inverse\:f(x)=\frac{x-2}{3x+7}
|
asymptotes of f(x)=((x^2+4x+3))/(x-1)
|
asymptotes\:f(x)=\frac{(x^{2}+4x+3)}{x-1}
|
asymptotes of f(x)= x/((x+2)(x+4))
|
asymptotes\:f(x)=\frac{x}{(x+2)(x+4)}
|
global extreme points of f(x)=e^x
|
global\:extreme\:points\:f(x)=e^{x}
|
domain of f(x)=7x^3+5x^2
|
domain\:f(x)=7x^{3}+5x^{2}
|
domain of F(t)= 1/(sqrt(t))
|
domain\:F(t)=\frac{1}{\sqrt{t}}
|
slope of x+4y=3
|
slope\:x+4y=3
|
domain of sqrt(x^2-5x)
|
domain\:\sqrt{x^{2}-5x}
|
inverse of f(x)=x^3+6
|
inverse\:f(x)=x^{3}+6
|
domain of f(x)=sqrt(x+4)+6
|
domain\:f(x)=\sqrt{x+4}+6
|
parity f(x)=-2x^2+5
|
parity\:f(x)=-2x^{2}+5
|
domain of-1/2 2^{x+5}+8
|
domain\:-\frac{1}{2}2^{x+5}+8
|
asymptotes of f(x)=(2x^2-8)/(x-1)
|
asymptotes\:f(x)=\frac{2x^{2}-8}{x-1}
|
extreme points of f(x)=x^3-2x^2+x
|
extreme\:points\:f(x)=x^{3}-2x^{2}+x
|
intercepts of y=x^2-x
|
intercepts\:y=x^{2}-x
|
range of f(x)=e^{x^2}
|
range\:f(x)=e^{x^{2}}
|
intercepts of 3(1/2)^x
|
intercepts\:3(\frac{1}{2})^{x}
|
asymptotes of (3x^2-12x)/(x^2-2x-3)
|
asymptotes\:\frac{3x^{2}-12x}{x^{2}-2x-3}
|
inflection points of (x^2-3)/(x-2)
|
inflection\:points\:\frac{x^{2}-3}{x-2}
|
extreme points of f(x)=-x^2+4x+6
|
extreme\:points\:f(x)=-x^{2}+4x+6
|
domain of f(x)=x^2+3x-7
|
domain\:f(x)=x^{2}+3x-7
|
inflection points of f(x)= 1/3 x^3-x
|
inflection\:points\:f(x)=\frac{1}{3}x^{3}-x
|
inverse of f(x)= 2/5 x-1
|
inverse\:f(x)=\frac{2}{5}x-1
|
extreme points of f(x)=x^4-8x^3
|
extreme\:points\:f(x)=x^{4}-8x^{3}
|
periodicity of f(x)=sin(1/4x-pi)+2
|
periodicity\:f(x)=\sin(1/4x-\pi)+2
|
perpendicular 15x-5y=20,\at (9,-1)
|
perpendicular\:15x-5y=20,\at\:(9,-1)
|
range of 5^{x-2}+7
|
range\:5^{x-2}+7
|
domain of f(x)=-sqrt(-2x-17)
|
domain\:f(x)=-\sqrt{-2x-17}
|
inverse of f(x)=2-6x^3
|
inverse\:f(x)=2-6x^{3}
|
domain of f(x)=(sqrt(x+4))/(x-1)
|
domain\:f(x)=\frac{\sqrt{x+4}}{x-1}
|
inverse of f(x)=x^2+5
|
inverse\:f(x)=x^{2}+5
|
asymptotes of x^2-2x
|
asymptotes\:x^{2}-2x
|
asymptotes of f(x)=-2*(5)^{x+3}
|
asymptotes\:f(x)=-2\cdot\:(5)^{x+3}
|
asymptotes of f(x)=(x^2+x-6)/(x^2+3x-4)
|
asymptotes\:f(x)=\frac{x^{2}+x-6}{x^{2}+3x-4}
|
asymptotes of ((2x+15))/(x-3)
|
asymptotes\:\frac{(2x+15)}{x-3}
|
intercepts of f(x)=-(x+2)^2+4
|
intercepts\:f(x)=-(x+2)^{2}+4
|
domain of f(x)= 3/(x+1)
|
domain\:f(x)=\frac{3}{x+1}
|
range of x+7,x>= 7
|
range\:x+7,x\ge\:7
|
domain of f(x)= 1/(sqrt(x-11))
|
domain\:f(x)=\frac{1}{\sqrt{x-11}}
|
inverse of f(x)=(x+4)/(x+7)
|
inverse\:f(x)=\frac{x+4}{x+7}
|
domain of f(x)=(2x^2-x-4)/(x^2+9)
|
domain\:f(x)=\frac{2x^{2}-x-4}{x^{2}+9}
|
asymptotes of f(x)=(3x)/(x^2-8)
|
asymptotes\:f(x)=\frac{3x}{x^{2}-8}
|
range of f(x)=10^{x+3}
|
range\:f(x)=10^{x+3}
|
inflection points of f(x)=2x^3-3x^2+8x-4
|
inflection\:points\:f(x)=2x^{3}-3x^{2}+8x-4
|
asymptotes of f(x)=tan(2x-2pi)
|
asymptotes\:f(x)=\tan(2x-2\pi)
|
line y+3=7(x-2)
|
line\:y+3=7(x-2)
|
range of y=x^2-3
|
range\:y=x^{2}-3
|
inverse of x+4
|
inverse\:x+4
|
inverse of f(x)=x^2-6
|
inverse\:f(x)=x^{2}-6
|
parity (sqrt(x^2+4)+x)/2
|
parity\:\frac{\sqrt{x^{2}+4}+x}{2}
|
inverse of f(x)=(2-x)/(x-3)
|
inverse\:f(x)=\frac{2-x}{x-3}
|
inflection points of f(x)=xe^{1/x}
|
inflection\:points\:f(x)=xe^{\frac{1}{x}}
|
midpoint (-1,4)(4,2)
|
midpoint\:(-1,4)(4,2)
|
f(x)=x^2-2x-8
|
f(x)=x^{2}-2x-8
|
asymptotes of f(x)=(3x^2)/(4x^2-1)
|
asymptotes\:f(x)=\frac{3x^{2}}{4x^{2}-1}
|
midpoint (10,1)(-4,7)
|
midpoint\:(10,1)(-4,7)
|
range of f(x)=log_{10}(5x-x^2-6)
|
range\:f(x)=\log_{10}(5x-x^{2}-6)
|
slope intercept of y=6x+2
|
slope\:intercept\:y=6x+2
|
parity x^4-x^2
|
parity\:x^{4}-x^{2}
|
periodicity of y= 1/4 cot(pi x)
|
periodicity\:y=\frac{1}{4}\cot(\pi\:x)
|
perpendicular y=3x-2,\at (2,5)
|
perpendicular\:y=3x-2,\at\:(2,5)
|
inverse of f(x)=2-8e^x
|
inverse\:f(x)=2-8e^{x}
|
parity f(x)=y^4+x^3-5x=0
|
parity\:f(x)=y^{4}+x^{3}-5x=0
|
range of y=|x|+2
|
range\:y=|x|+2
|
asymptotes of (9x^3)/(x-6)
|
asymptotes\:\frac{9x^{3}}{x-6}
|
critical points of f(x)=xln(8x)
|
critical\:points\:f(x)=xln(8x)
|
domain of (2x^2-5x+5)/(x-2)
|
domain\:\frac{2x^{2}-5x+5}{x-2}
|
parity f(x)=-(x-2)(x^2-25)(3x+6)
|
parity\:f(x)=-(x-2)(x^{2}-25)(3x+6)
|
domain of sqrt(4x^2-32)
|
domain\:\sqrt{4x^{2}-32}
|