asymptotes of f(x)=(x^2+5x+4)/(x^2+3x+2)
|
asymptotes\:f(x)=\frac{x^{2}+5x+4}{x^{2}+3x+2}
|
range of f(x)=x^2-4<=-2
|
range\:f(x)=x^{2}-4\le\:-2
|
critical points of f(x)=x^3-x
|
critical\:points\:f(x)=x^{3}-x
|
range of 1/(4-x^2)
|
range\:\frac{1}{4-x^{2}}
|
domain of y=x^3-4x
|
domain\:y=x^{3}-4x
|
inverse of f(x)=3(x+8)^7
|
inverse\:f(x)=3(x+8)^{7}
|
asymptotes of f(x)=(x+2)/(x^2+2x-8)
|
asymptotes\:f(x)=\frac{x+2}{x^{2}+2x-8}
|
domain of f(x)=-2(1/4)^{x-3}
|
domain\:f(x)=-2(\frac{1}{4})^{x-3}
|
domain of f(t)=\sqrt[3]{t+6}
|
domain\:f(t)=\sqrt[3]{t+6}
|
domain of f(x)=(2x)/(x-2)
|
domain\:f(x)=\frac{2x}{x-2}
|
asymptotes of (x^2+1)/(x+1)
|
asymptotes\:\frac{x^{2}+1}{x+1}
|
domain of f(x)=(sqrt(x+3))/(x-1)
|
domain\:f(x)=\frac{\sqrt{x+3}}{x-1}
|
critical points of x^3-2x^2+x+8
|
critical\:points\:x^{3}-2x^{2}+x+8
|
y=x-2
|
y=x-2
|
extreme points of f(x)=x^3-6x^2-96x
|
extreme\:points\:f(x)=x^{3}-6x^{2}-96x
|
asymptotes of-4+log_{2}(5-2x)
|
asymptotes\:-4+\log_{2}(5-2x)
|
range of f(x)=sqrt(x+4)-2
|
range\:f(x)=\sqrt{x+4}-2
|
range of f(x)= 1/(x+2)
|
range\:f(x)=\frac{1}{x+2}
|
symmetry y=-(X-3)^2+1
|
symmetry\:y=-(X-3)^{2}+1
|
inverse of f(x)=x^{3/4}
|
inverse\:f(x)=x^{\frac{3}{4}}
|
extreme points of f(x)=x^4-4x^3+4x^2
|
extreme\:points\:f(x)=x^{4}-4x^{3}+4x^{2}
|
inverse of 10log_{10}(4)
|
inverse\:10\log_{10}(4)
|
parity f(x)= x/(x+8)
|
parity\:f(x)=\frac{x}{x+8}
|
domain of f(x)=(sqrt(x+2))/(6x^2+x-2)
|
domain\:f(x)=\frac{\sqrt{x+2}}{6x^{2}+x-2}
|
intercepts of f(x)=x^2-x-30
|
intercepts\:f(x)=x^{2}-x-30
|
distance (-1,3)(6,2)
|
distance\:(-1,3)(6,2)
|
intercepts of f(x)=(x^2-9x+11)/(x-3)
|
intercepts\:f(x)=\frac{x^{2}-9x+11}{x-3}
|
perpendicular y=-x/4-5(-9,-6)
|
perpendicular\:y=-\frac{x}{4}-5(-9,-6)
|
domain of = 1/(x+2)
|
domain\:=\frac{1}{x+2}
|
domain of sqrt(25-x^2)
|
domain\:\sqrt{25-x^{2}}
|
line (-79,45),(-43,29)
|
line\:(-79,45),(-43,29)
|
inverse of f(x)=-1/4 x^5
|
inverse\:f(x)=-\frac{1}{4}x^{5}
|
domain of f(x)=(sqrt(x-4))/(x-10)
|
domain\:f(x)=\frac{\sqrt{x-4}}{x-10}
|
inverse of f(x)=2-x/3
|
inverse\:f(x)=2-\frac{x}{3}
|
asymptotes of 1/(x^2)
|
asymptotes\:\frac{1}{x^{2}}
|
domain of (x+12)/(x-8)
|
domain\:\frac{x+12}{x-8}
|
range of-x^2+4x-3
|
range\:-x^{2}+4x-3
|
monotone intervals f(x)=x^4+2x^3+x^2
|
monotone\:intervals\:f(x)=x^{4}+2x^{3}+x^{2}
|
domain of 2/(\frac{x){x+2}}
|
domain\:\frac{2}{\frac{x}{x+2}}
|
intercepts of f(x)=x^2+x-12
|
intercepts\:f(x)=x^{2}+x-12
|
y=-0.23x^2+1.87x+1.5
|
y=-0.23x^{2}+1.87x+1.5
|
asymptotes of f(x)=xe^{-8x}
|
asymptotes\:f(x)=xe^{-8x}
|
parallel y=y+4,\at 2,2
|
parallel\:y=y+4,\at\:2,2
|
critical points of f(x)=(ln(x))/(x^6)
|
critical\:points\:f(x)=\frac{\ln(x)}{x^{6}}
|
domain of f(x)=(x+8)/(2-x)
|
domain\:f(x)=\frac{x+8}{2-x}
|
critical points of f(x)=40x-4x^2
|
critical\:points\:f(x)=40x-4x^{2}
|
inflection points of x^3-4x
|
inflection\:points\:x^{3}-4x
|
domain of f(x)= 30/7-3/7 x
|
domain\:f(x)=\frac{30}{7}-\frac{3}{7}x
|
inflection points of x-5x^{1/5}
|
inflection\:points\:x-5x^{\frac{1}{5}}
|
perpendicular x-2y=5
|
perpendicular\:x-2y=5
|
range of f(x)=81000-7000x
|
range\:f(x)=81000-7000x
|
domain of y^2-1
|
domain\:y^{2}-1
|
point 11000-x^3+36x^2+700x
|
point\:11000-x^{3}+36x^{2}+700x
|
domain of f(x)=(sqrt(4+x))/(6-x)
|
domain\:f(x)=\frac{\sqrt{4+x}}{6-x}
|
symmetry (4x)/(x^2+4)
|
symmetry\:\frac{4x}{x^{2}+4}
|
slope of y-18=6x
|
slope\:y-18=6x
|
critical points of 2x+(1936)/x
|
critical\:points\:2x+\frac{1936}{x}
|
f(x)=sqrt(4-x^2)
|
f(x)=\sqrt{4-x^{2}}
|
intercepts of 1/(x^2-4)
|
intercepts\:\frac{1}{x^{2}-4}
|
distance (4,2)(8,5)
|
distance\:(4,2)(8,5)
|
domain of f(x)=\sqrt[3]{t-1}
|
domain\:f(x)=\sqrt[3]{t-1}
|
inverse of (x+3)/(x-5)
|
inverse\:\frac{x+3}{x-5}
|
inverse of f(x)=3+sqrt(x-4)
|
inverse\:f(x)=3+\sqrt{x-4}
|
inverse of f(x)=1-x^2
|
inverse\:f(x)=1-x^{2}
|
domain of (2x^2-8x)/(x^2-7x+12)
|
domain\:\frac{2x^{2}-8x}{x^{2}-7x+12}
|
range of y=sqrt(4-x^2)
|
range\:y=\sqrt{4-x^{2}}
|
shift f(x)= 1/2 sin(2(x+(pi)/6))-1
|
shift\:f(x)=\frac{1}{2}\sin(2(x+\frac{\pi}{6}))-1
|
inverse of f(x)=(5-3x)/(7-4x)
|
inverse\:f(x)=\frac{5-3x}{7-4x}
|
critical points of sin(x)
|
critical\:points\:\sin(x)
|
asymptotes of f(x)=3csc(x+(pi)/2)
|
asymptotes\:f(x)=3\csc(x+\frac{\pi}{2})
|
perpendicular 5x+6y=42
|
perpendicular\:5x+6y=42
|
range of (x^2-4)/(7x^2)
|
range\:\frac{x^{2}-4}{7x^{2}}
|
inverse of f(x)= 1/3 x-2
|
inverse\:f(x)=\frac{1}{3}x-2
|
inverse of F(X)=X^4
|
inverse\:F(X)=X^{4}
|
domain of f(x)=log_{2}(4-x^4)
|
domain\:f(x)=\log_{2}(4-x^{4})
|
domain of f(x)=-4sqrt(x)
|
domain\:f(x)=-4\sqrt{x}
|
monotone intervals f(x)=-x^4-4x^3+8x-1
|
monotone\:intervals\:f(x)=-x^{4}-4x^{3}+8x-1
|
domain of f(x)=\sqrt[3]{x-4}
|
domain\:f(x)=\sqrt[3]{x-4}
|
domain of f(x)=15-x
|
domain\:f(x)=15-x
|
asymptotes of f(x)= 3/(x+5)
|
asymptotes\:f(x)=\frac{3}{x+5}
|
slope intercept of-7y=8x-3
|
slope\:intercept\:-7y=8x-3
|
domain of f(x)=(3x)/(x+5)
|
domain\:f(x)=\frac{3x}{x+5}
|
inverse of x/(x+9)
|
inverse\:\frac{x}{x+9}
|
asymptotes of f(x)=ln(e+x^2)
|
asymptotes\:f(x)=\ln(e+x^{2})
|
range of y=sqrt(2x+1)
|
range\:y=\sqrt{2x+1}
|
inverse of f(x)=(4x)/(x-2)
|
inverse\:f(x)=\frac{4x}{x-2}
|
domain of f(x)=sqrt(x^3-36x)
|
domain\:f(x)=\sqrt{x^{3}-36x}
|
asymptotes of f(x)=(x^2-x)/(x^2-8x+7)
|
asymptotes\:f(x)=\frac{x^{2}-x}{x^{2}-8x+7}
|
slope of f(x)=-2x-4
|
slope\:f(x)=-2x-4
|
inflection points of (8x)/((5x^2+4)^2)
|
inflection\:points\:\frac{8x}{(5x^{2}+4)^{2}}
|
asymptotes of f(x)=-1/(x-3)+2
|
asymptotes\:f(x)=-\frac{1}{x-3}+2
|
extreme points of f(x)=x^3-3x^2-24x-4
|
extreme\:points\:f(x)=x^{3}-3x^{2}-24x-4
|
midpoint (-4,5),(2,-3)
|
midpoint\:(-4,5),(2,-3)
|
domain of 1/(x+10)
|
domain\:\frac{1}{x+10}
|
inverse of f(x)= 2/3 x-4
|
inverse\:f(x)=\frac{2}{3}x-4
|
slope of x+4y=1
|
slope\:x+4y=1
|
domain of f(x)=-sqrt(4-x^2)
|
domain\:f(x)=-\sqrt{4-x^{2}}
|
domain of x/(\sqrt[4]{25-x^2)}
|
domain\:\frac{x}{\sqrt[4]{25-x^{2}}}
|
asymptotes of f(x)=-x^2-3x+2
|
asymptotes\:f(x)=-x^{2}-3x+2
|
asymptotes of f(x)=(-8)/(-x-6)
|
asymptotes\:f(x)=\frac{-8}{-x-6}
|