asymptotes of (x-1)/(x^2+1)
|
asymptotes\:\frac{x-1}{x^{2}+1}
|
slope intercept of-4/3
|
slope\:intercept\:-\frac{4}{3}
|
slope of y=-3x-4
|
slope\:y=-3x-4
|
periodicity of y=-sin(2x)
|
periodicity\:y=-\sin(2x)
|
range of tan(2x-5)
|
range\:\tan(2x-5)
|
critical points of 3cos(4x)
|
critical\:points\:3\cos(4x)
|
domain of f(x)=sqrt(36-x^2)+sqrt(x+2)
|
domain\:f(x)=\sqrt{36-x^{2}}+\sqrt{x+2}
|
critical points of-6x^2+37x+13
|
critical\:points\:-6x^{2}+37x+13
|
monotone intervals 1/3 x^3-2x^2+4x-4
|
monotone\:intervals\:\frac{1}{3}x^{3}-2x^{2}+4x-4
|
asymptotes of f(x)=(3x+2)/(sqrt(x))
|
asymptotes\:f(x)=\frac{3x+2}{\sqrt{x}}
|
critical points of f(x)=-x^2-4x
|
critical\:points\:f(x)=-x^{2}-4x
|
midpoint (4,1)(-2,-5)
|
midpoint\:(4,1)(-2,-5)
|
inverse of f(x)=8x-1
|
inverse\:f(x)=8x-1
|
extreme points of f(x)=x^2+3x+2
|
extreme\:points\:f(x)=x^{2}+3x+2
|
parity 0.2*0.3^{0.4x-2.5}+2.2
|
parity\:0.2\cdot\:0.3^{0.4x-2.5}+2.2
|
monotone intervals x^2+10x+2
|
monotone\:intervals\:x^{2}+10x+2
|
critical points of f(x)=(16-x^2)^{3/5}
|
critical\:points\:f(x)=(16-x^{2})^{\frac{3}{5}}
|
inverse of f(x)=x^2+8x>= 0
|
inverse\:f(x)=x^{2}+8x\ge\:0
|
inverse of f(x)= 3/(x+1)
|
inverse\:f(x)=\frac{3}{x+1}
|
domain of \sqrt[3]{t+4}
|
domain\:\sqrt[3]{t+4}
|
domain of f(x)=sqrt(x-2)+1
|
domain\:f(x)=\sqrt{x-2}+1
|
critical points of f(x)=sin^2(6x)
|
critical\:points\:f(x)=\sin^{2}(6x)
|
domain of f(x)=sqrt(5x+10)
|
domain\:f(x)=\sqrt{5x+10}
|
e^x
|
e^{x}
|
range of f(x)=x^2+2x+9
|
range\:f(x)=x^{2}+2x+9
|
domain of (64)/(x^2)+81
|
domain\:\frac{64}{x^{2}}+81
|
inverse of y=sqrt(x-4)
|
inverse\:y=\sqrt{x-4}
|
slope intercept of-2x+y=-4
|
slope\:intercept\:-2x+y=-4
|
inverse of 1500
|
inverse\:1500
|
domain of x/(sqrt(x^2+7))
|
domain\:\frac{x}{\sqrt{x^{2}+7}}
|
inverse of y=\sqrt[4]{x}
|
inverse\:y=\sqrt[4]{x}
|
domain of y=x^2-2x+1
|
domain\:y=x^{2}-2x+1
|
midpoint (-1,8)(3,5.5)
|
midpoint\:(-1,8)(3,5.5)
|
inverse of 1/x+8
|
inverse\:\frac{1}{x}+8
|
domain of g(x)=x^2-4
|
domain\:g(x)=x^{2}-4
|
asymptotes of f(x)= x/(x^2+49)
|
asymptotes\:f(x)=\frac{x}{x^{2}+49}
|
domain of x/(5x+16)
|
domain\:\frac{x}{5x+16}
|
asymptotes of f(x)=(x^3-5x^2+4)/(x^2-1)
|
asymptotes\:f(x)=\frac{x^{3}-5x^{2}+4}{x^{2}-1}
|
domain of f(x)= 1/3 sqrt(x-5)
|
domain\:f(x)=\frac{1}{3}\sqrt{x-5}
|
intercepts of f(x)=x^2-4
|
intercepts\:f(x)=x^{2}-4
|
extreme points of f(x)=2x^3-9x^2-24x+9
|
extreme\:points\:f(x)=2x^{3}-9x^{2}-24x+9
|
critical points of x/(x^2-1)
|
critical\:points\:\frac{x}{x^{2}-1}
|
inverse of 1/(x^3+1)
|
inverse\:\frac{1}{x^{3}+1}
|
extreme points of sqrt(x-1)
|
extreme\:points\:\sqrt{x-1}
|
symmetry-x^2+x+30
|
symmetry\:-x^{2}+x+30
|
distance (1,3)(5,3)
|
distance\:(1,3)(5,3)
|
domain of f(x)=\sqrt[3]{x-12}
|
domain\:f(x)=\sqrt[3]{x-12}
|
slope intercept of 2x+y=6
|
slope\:intercept\:2x+y=6
|
domain of f(x)=4x^2-x-3
|
domain\:f(x)=4x^{2}-x-3
|
domain of 2x-12
|
domain\:2x-12
|
asymptotes of (6x+3)/(sqrt(x+4))
|
asymptotes\:\frac{6x+3}{\sqrt{x+4}}
|
distance (4/5 , 1/10)(1/5 , 15/10)
|
distance\:(\frac{4}{5},\frac{1}{10})(\frac{1}{5},\frac{15}{10})
|
range of-sqrt(x+4)-1
|
range\:-\sqrt{x+4}-1
|
extreme points of f(x)=x^3-5x^2-8x+4
|
extreme\:points\:f(x)=x^{3}-5x^{2}-8x+4
|
asymptotes of f(x)=(x(x+3))/(x^2+x-6)
|
asymptotes\:f(x)=\frac{x(x+3)}{x^{2}+x-6}
|
inverse of (-x-3)/(x+2)
|
inverse\:\frac{-x-3}{x+2}
|
parity f(x)=5-3x
|
parity\:f(x)=5-3x
|
domain of-1/(2sqrt(6-x))
|
domain\:-\frac{1}{2\sqrt{6-x}}
|
critical points of f(x)=9x^2-x^3-3
|
critical\:points\:f(x)=9x^{2}-x^{3}-3
|
asymptotes of (9x^2-16)/(2(3x+4)^2)
|
asymptotes\:\frac{9x^{2}-16}{2(3x+4)^{2}}
|
slope intercept of x-y=1
|
slope\:intercept\:x-y=1
|
inverse of (((x^3)+3))/(2(x^3)-5)
|
inverse\:\frac{((x^{3})+3)}{2(x^{3})-5}
|
intercepts of f(x)= 4/5
|
intercepts\:f(x)=\frac{4}{5}
|
inverse of f(x)=-(n+1)^3
|
inverse\:f(x)=-(n+1)^{3}
|
inverse of f(x)=12+3sqrt(x)
|
inverse\:f(x)=12+3\sqrt{x}
|
asymptotes of f(x)=(4x+20)/(-x^2-5x)
|
asymptotes\:f(x)=\frac{4x+20}{-x^{2}-5x}
|
distance (30,30),(0,0)
|
distance\:(30,30),(0,0)
|
domain of f(x)=(5x+3)/(3x-4)
|
domain\:f(x)=\frac{5x+3}{3x-4}
|
range of f(x)= 2/(x^2+1)
|
range\:f(x)=\frac{2}{x^{2}+1}
|
inflection points of f(x)=(4x-3)^{1/2}
|
inflection\:points\:f(x)=(4x-3)^{\frac{1}{2}}
|
inverse of f(x)=e2x-1
|
inverse\:f(x)=e2x-1
|
extreme points of f(x)=sqrt(1-(x-3)^2)
|
extreme\:points\:f(x)=\sqrt{1-(x-3)^{2}}
|
asymptotes of f(x)=(100)/x
|
asymptotes\:f(x)=\frac{100}{x}
|
range of 6x-x^2+7
|
range\:6x-x^{2}+7
|
slope of y= 3/5
|
slope\:y=\frac{3}{5}
|
asymptotes of f(x)= x/(x^2+16)
|
asymptotes\:f(x)=\frac{x}{x^{2}+16}
|
inverse of f(x)=log_{6}(4x)+log_{6}(3)
|
inverse\:f(x)=\log_{6}(4x)+\log_{6}(3)
|
inverse of f(x)=(x^5)/5
|
inverse\:f(x)=\frac{x^{5}}{5}
|
domain of f(x)=(sqrt(3+x))/(2-x)
|
domain\:f(x)=\frac{\sqrt{3+x}}{2-x}
|
asymptotes of f(x)=(x+1)/(x^2-6x+8)
|
asymptotes\:f(x)=\frac{x+1}{x^{2}-6x+8}
|
inflection points of f(x)=2x^3-3x^2+7x-8
|
inflection\:points\:f(x)=2x^{3}-3x^{2}+7x-8
|
inverse of f(x)=65+5x
|
inverse\:f(x)=65+5x
|
inverse of f(x)=ln(2+ln(x))
|
inverse\:f(x)=\ln(2+\ln(x))
|
distance (0,1)(-5,-6)
|
distance\:(0,1)(-5,-6)
|
inverse of f(x)=(4-\sqrt[5]{16x})/2
|
inverse\:f(x)=\frac{4-\sqrt[5]{16x}}{2}
|
symmetry y=6x^3
|
symmetry\:y=6x^{3}
|
extreme points of f(x)=(2100)/x+4x
|
extreme\:points\:f(x)=\frac{2100}{x}+4x
|
domain of f(x)=(2x^2-3)/(x^2-5x+6)
|
domain\:f(x)=\frac{2x^{2}-3}{x^{2}-5x+6}
|
domain of f(x)=3x^2+2
|
domain\:f(x)=3x^{2}+2
|
line (5,10.388),(7,13.312)
|
line\:(5,10.388),(7,13.312)
|
midpoint (6,-9)(5,-4)
|
midpoint\:(6,-9)(5,-4)
|
domain of f(x)=(2x+1)/(x-1)
|
domain\:f(x)=\frac{2x+1}{x-1}
|
extreme points of f(x)=4x^3-48
|
extreme\:points\:f(x)=4x^{3}-48
|
domain of f(x)=(x^2-1)^2-1
|
domain\:f(x)=(x^{2}-1)^{2}-1
|
f(x)= 1/2 x^2
|
f(x)=\frac{1}{2}x^{2}
|
midpoint (7,2)(9,16)
|
midpoint\:(7,2)(9,16)
|
extreme points of f(x)=3x^5-5x^3
|
extreme\:points\:f(x)=3x^{5}-5x^{3}
|
extreme points of (2x^3)/3-x^2+x/2+1/3
|
extreme\:points\:\frac{2x^{3}}{3}-x^{2}+\frac{x}{2}+\frac{1}{3}
|
y= 2/x
|
y=\frac{2}{x}
|
inverse of f(x)=e^{-2x}+3
|
inverse\:f(x)=e^{-2x}+3
|