extreme points of f(x)=-3x^4-8x^3-6x^2+1
|
extreme\:points\:f(x)=-3x^{4}-8x^{3}-6x^{2}+1
|
critical points of f(x)=3x^2+16x
|
critical\:points\:f(x)=3x^{2}+16x
|
domain of f(x)=sqrt(8+5x)
|
domain\:f(x)=\sqrt{8+5x}
|
range of cos(2\varphi)
|
range\:\cos(2\varphi)
|
perpendicular y+3= 3/4 x+5
|
perpendicular\:y+3=\frac{3}{4}x+5
|
intercepts of f(x)=ln(x)+6
|
intercepts\:f(x)=\ln(x)+6
|
slope intercept of-5x+y=-24
|
slope\:intercept\:-5x+y=-24
|
range of 3\div (sqrt(2x-5))
|
range\:3\div\:(\sqrt{2x-5})
|
midpoint (3,5)(2,6)
|
midpoint\:(3,5)(2,6)
|
domain of f(x)=sqrt(5-x^2)
|
domain\:f(x)=\sqrt{5-x^{2}}
|
midpoint (-4,3)(5,7)
|
midpoint\:(-4,3)(5,7)
|
slope intercept of y=-6
|
slope\:intercept\:y=-6
|
inverse of f(x)=2log_{2}(x)
|
inverse\:f(x)=2\log_{2}(x)
|
range of f(x)=3x+6
|
range\:f(x)=3x+6
|
extreme points of (e^x)/(1+x)
|
extreme\:points\:\frac{e^{x}}{1+x}
|
domain of f(x)= 6/(x^2+16)+6/(x^2-1)
|
domain\:f(x)=\frac{6}{x^{2}+16}+\frac{6}{x^{2}-1}
|
line (-2,0)(0,4)
|
line\:(-2,0)(0,4)
|
midpoint (-5,-3)(-1,-7)
|
midpoint\:(-5,-3)(-1,-7)
|
extreme points of g(x)=(x-2)^3(x+1)^2
|
extreme\:points\:g(x)=(x-2)^{3}(x+1)^{2}
|
inverse of g(x)= 2/x-1
|
inverse\:g(x)=\frac{2}{x}-1
|
monotone intervals 4/(x^2-2x)
|
monotone\:intervals\:\frac{4}{x^{2}-2x}
|
critical points of f(x)=3xe^{5x}
|
critical\:points\:f(x)=3xe^{5x}
|
y=sqrt(-x)
|
y=\sqrt{-x}
|
line (-10,3)(-10,10)
|
line\:(-10,3)(-10,10)
|
asymptotes of f(x)=(4x)/(x+2)
|
asymptotes\:f(x)=\frac{4x}{x+2}
|
perpendicular y=-1/2 x-1,\at (3,2)
|
perpendicular\:y=-\frac{1}{2}x-1,\at\:(3,2)
|
critical points of f(x)=x^3+7x^2-3x+9
|
critical\:points\:f(x)=x^{3}+7x^{2}-3x+9
|
domain of 4(4x-1)-1
|
domain\:4(4x-1)-1
|
midpoint (-3,2)(9,8)
|
midpoint\:(-3,2)(9,8)
|
inverse of g(t)=(7-9t)^{5/2}
|
inverse\:g(t)=(7-9t)^{\frac{5}{2}}
|
domain of f(x)=(-9x+8)/(-12x+11)
|
domain\:f(x)=\frac{-9x+8}{-12x+11}
|
asymptotes of 9-3^x
|
asymptotes\:9-3^{x}
|
domain of f(x)= x/(1-ln(x-9))
|
domain\:f(x)=\frac{x}{1-\ln(x-9)}
|
domain of f(x)=(sqrt(x+1))/x
|
domain\:f(x)=\frac{\sqrt{x+1}}{x}
|
range of f(x)= x/(x^2-25)
|
range\:f(x)=\frac{x}{x^{2}-25}
|
range of f(x)=x^2+49
|
range\:f(x)=x^{2}+49
|
critical points of x
|
critical\:points\:x
|
symmetry x^3-27
|
symmetry\:x^{3}-27
|
critical points of f(x)=(e^x+e^{-x})/3
|
critical\:points\:f(x)=\frac{e^{x}+e^{-x}}{3}
|
slope of y=-3x+6
|
slope\:y=-3x+6
|
asymptotes of y=sqrt((2x+1)/(x-1))
|
asymptotes\:y=\sqrt{\frac{2x+1}{x-1}}
|
slope of 7x-5y=20
|
slope\:7x-5y=20
|
asymptotes of (3x^2-3)/(x^2-5x+4)
|
asymptotes\:\frac{3x^{2}-3}{x^{2}-5x+4}
|
domain of f(x)=(sqrt(x))/(5-x)
|
domain\:f(x)=\frac{\sqrt{x}}{5-x}
|
inverse of f(x)=4x+6y=24
|
inverse\:f(x)=4x+6y=24
|
domain of f(x)=(\sqrt[3]{x-5})/(x^3-5)
|
domain\:f(x)=\frac{\sqrt[3]{x-5}}{x^{3}-5}
|
domain of-(x-4)^2+6
|
domain\:-(x-4)^{2}+6
|
domain of (x+1)^2
|
domain\:(x+1)^{2}
|
extreme points of-7+8x-x^3
|
extreme\:points\:-7+8x-x^{3}
|
inverse of (5x-1)/(2x-3)
|
inverse\:\frac{5x-1}{2x-3}
|
perpendicular y+3=-1/2 (x-10)
|
perpendicular\:y+3=-\frac{1}{2}(x-10)
|
domain of f(x)= 9/(x-6)
|
domain\:f(x)=\frac{9}{x-6}
|
domain of f(x)=x^2(96-x)
|
domain\:f(x)=x^{2}(96-x)
|
range of sqrt(4x^2+20)
|
range\:\sqrt{4x^{2}+20}
|
midpoint (7,-6)(-5,8)
|
midpoint\:(7,-6)(-5,8)
|
extreme points of f(x)=x^2(7-x)^3
|
extreme\:points\:f(x)=x^{2}(7-x)^{3}
|
parity sec^2(theta)dtheta
|
parity\:\sec^{2}(\theta)d\theta
|
inverse of y=(x-2)/(x+2)
|
inverse\:y=\frac{x-2}{x+2}
|
range of f(x)=3*e^{2x}
|
range\:f(x)=3\cdot\:e^{2x}
|
inverse of f(x)=(2x-3)/(x+1)
|
inverse\:f(x)=\frac{2x-3}{x+1}
|
extreme points of f(x)=x^3-4x^2-x+4
|
extreme\:points\:f(x)=x^{3}-4x^{2}-x+4
|
intercepts of f(x)=x^2+4x+3
|
intercepts\:f(x)=x^{2}+4x+3
|
midpoint (4,-1)(-1,-2)
|
midpoint\:(4,-1)(-1,-2)
|
parity f(x)=(x^2)/(2-x)
|
parity\:f(x)=\frac{x^{2}}{2-x}
|
midpoint (-1,2)(7,3)
|
midpoint\:(-1,2)(7,3)
|
range of 1/2 sqrt(x)+3
|
range\:\frac{1}{2}\sqrt{x}+3
|
extreme points of y=x^3-4x^2-3x+8
|
extreme\:points\:y=x^{3}-4x^{2}-3x+8
|
domain of f(x)=(sqrt(x2+4))/(4x-4)
|
domain\:f(x)=\frac{\sqrt{x2+4}}{4x-4}
|
domain of ln(t+5)
|
domain\:\ln(t+5)
|
slope intercept of y-12=4(x-6)
|
slope\:intercept\:y-12=4(x-6)
|
intercepts of f(x)=y^2=x+25
|
intercepts\:f(x)=y^{2}=x+25
|
intercepts of f(x)=(x-4)/(x-2)
|
intercepts\:f(x)=\frac{x-4}{x-2}
|
domain of f(x)= 9/(x^2+16)+1/(x^2-25)
|
domain\:f(x)=\frac{9}{x^{2}+16}+\frac{1}{x^{2}-25}
|
inverse of f(x)=4+sqrt(5+x)
|
inverse\:f(x)=4+\sqrt{5+x}
|
extreme points of f(x)=-16x^2+128x+340
|
extreme\:points\:f(x)=-16x^{2}+128x+340
|
inverse of 3/(x-5)
|
inverse\:\frac{3}{x-5}
|
domain of f(x)=(x^2+1+20x)/(x^2+1+2x)
|
domain\:f(x)=\frac{x^{2}+1+20x}{x^{2}+1+2x}
|
range of f(x)=log_{10}(1-x^2)
|
range\:f(x)=\log_{10}(1-x^{2})
|
asymptotes of f(x)=(-2x^2+1)/(x^2+x+8)
|
asymptotes\:f(x)=\frac{-2x^{2}+1}{x^{2}+x+8}
|
asymptotes of f(x)= x/(x-6)
|
asymptotes\:f(x)=\frac{x}{x-6}
|
inverse of f(x)=-4/5 x+1/5
|
inverse\:f(x)=-\frac{4}{5}x+\frac{1}{5}
|
domain of f(x)=\sqrt[4]{x-2}
|
domain\:f(x)=\sqrt[4]{x-2}
|
range of f(x)=-sqrt(x-2)
|
range\:f(x)=-\sqrt{x-2}
|
slope intercept of 2-1
|
slope\:intercept\:2-1
|
inverse of f(x)= 4/(sqrt(x))
|
inverse\:f(x)=\frac{4}{\sqrt{x}}
|
range of (6X)/(X-3)
|
range\:\frac{6X}{X-3}
|
domain of f(x)= 3/x-2
|
domain\:f(x)=\frac{3}{x}-2
|
domain of f(x)=-8x+1
|
domain\:f(x)=-8x+1
|
domain of f(x)=4-sqrt(x)
|
domain\:f(x)=4-\sqrt{x}
|
domain of (9/x)/(9/x+3)
|
domain\:\frac{\frac{9}{x}}{\frac{9}{x}+3}
|
extreme points of \sqrt[5]{x}(x-2)
|
extreme\:points\:\sqrt[5]{x}(x-2)
|
cosh(x)
|
\cosh(x)
|
inverse of y= x/(x-1)
|
inverse\:y=\frac{x}{x-1}
|
inverse of y=2\sqrt[4]{x}
|
inverse\:y=2\sqrt[4]{x}
|
slope of y=3(7x+192)
|
slope\:y=3(7x+192)
|
domain of 2-sqrt(x+4)
|
domain\:2-\sqrt{x+4}
|
intercepts of f(x)=2x-2
|
intercepts\:f(x)=2x-2
|
inverse of f(x)=2(x+2)^2-3
|
inverse\:f(x)=2(x+2)^{2}-3
|
inverse of f(x)=(3x-4)/(2x+1)
|
inverse\:f(x)=\frac{3x-4}{2x+1}
|
asymptotes of f(x)=tan(x)
|
asymptotes\:f(x)=\tan(x)
|