inverse of f(x)=-tan(x+5)-4
|
inverse\:f(x)=-\tan(x+5)-4
|
slope of 12x+5y=-1
|
slope\:12x+5y=-1
|
domain of 3/(x+5)
|
domain\:\frac{3}{x+5}
|
inverse of f(x)= 3/2 x^3+4
|
inverse\:f(x)=\frac{3}{2}x^{3}+4
|
inverse of f(x)= x/(x+2)
|
inverse\:f(x)=\frac{x}{x+2}
|
parity f(x)=x^3-3
|
parity\:f(x)=x^{3}-3
|
domain of f(x)=sqrt(3x^2+5x-2)
|
domain\:f(x)=\sqrt{3x^{2}+5x-2}
|
range of f(x)=(2x)/(x^2+1)
|
range\:f(x)=\frac{2x}{x^{2}+1}
|
asymptotes of f(x)=(x+8)/(x^2-64)
|
asymptotes\:f(x)=\frac{x+8}{x^{2}-64}
|
asymptotes of f(x)=(2x-3)/(x-1)
|
asymptotes\:f(x)=\frac{2x-3}{x-1}
|
parity sec^3(x)dx
|
parity\:\sec^{3}(x)dx
|
domain of y=sqrt(x+4)
|
domain\:y=\sqrt{x+4}
|
slope of x+6y=42
|
slope\:x+6y=42
|
domain of f(x)=log_{1/20}(-x)
|
domain\:f(x)=\log_{\frac{1}{20}}(-x)
|
monotone intervals x+(25)/x
|
monotone\:intervals\:x+\frac{25}{x}
|
intercepts of 4sin(2x-(pi)/3)
|
intercepts\:4\sin(2x-\frac{\pi}{3})
|
line (3,-1)(5,-5)
|
line\:(3,-1)(5,-5)
|
critical points of x^4-4x^3
|
critical\:points\:x^{4}-4x^{3}
|
inverse of f(x)=ln(x+2)
|
inverse\:f(x)=\ln(x+2)
|
perpendicular 12x+11y=22
|
perpendicular\:12x+11y=22
|
inverse of f(x)=\sqrt[3]{x+4}-9
|
inverse\:f(x)=\sqrt[3]{x+4}-9
|
domain of f(x)= 2/(x-10)
|
domain\:f(x)=\frac{2}{x-10}
|
line (7,12)(7,9)
|
line\:(7,12)(7,9)
|
inverse of f(x)=((x-1))/(x+2)
|
inverse\:f(x)=\frac{(x-1)}{x+2}
|
domain of 5/x
|
domain\:\frac{5}{x}
|
range of f(x)=3cos(2x)+2
|
range\:f(x)=3\cos(2x)+2
|
parallel y=-x+1,\at (2,6)
|
parallel\:y=-x+1,\at\:(2,6)
|
intercepts of y= 2/(x+3)-1
|
intercepts\:y=\frac{2}{x+3}-1
|
intercepts of f(x)=y^2-4
|
intercepts\:f(x)=y^{2}-4
|
slope intercept of 7x-14y=-56
|
slope\:intercept\:7x-14y=-56
|
range of-sqrt(16-x^2)
|
range\:-\sqrt{16-x^{2}}
|
inverse of (3s)/(s^2+3s+2)
|
inverse\:\frac{3s}{s^{2}+3s+2}
|
range of f(x)=|x+3|
|
range\:f(x)=|x+3|
|
domain of f(x)=(\sqrt[3]{3x+5})/(x^3+x)
|
domain\:f(x)=\frac{\sqrt[3]{3x+5}}{x^{3}+x}
|
range of y=(x-5)^2
|
range\:y=(x-5)^{2}
|
asymptotes of f(x)=(x^2-2x-24)/(x^2-64)
|
asymptotes\:f(x)=\frac{x^{2}-2x-24}{x^{2}-64}
|
parity f(x)= 1/x-x
|
parity\:f(x)=\frac{1}{x}-x
|
inverse of 1/(a-2)
|
inverse\:\frac{1}{a-2}
|
critical points of f(x)=-(x^3)/3+16x
|
critical\:points\:f(x)=-\frac{x^{3}}{3}+16x
|
slope of y= 2/3 x+3
|
slope\:y=\frac{2}{3}x+3
|
range of f(x)=sqrt((-2x)/(1-x^2))
|
range\:f(x)=\sqrt{\frac{-2x}{1-x^{2}}}
|
perpendicular y=3x-2,\at x=-1
|
perpendicular\:y=3x-2,\at\:x=-1
|
extreme points of f(x)=sin(5t)
|
extreme\:points\:f(x)=\sin(5t)
|
perpendicular y=-2/5 \land (-2,1)
|
perpendicular\:y=-\frac{2}{5}\land\:(-2,1)
|
asymptotes of f(x)=(4-sqrt(x))/(x-16)
|
asymptotes\:f(x)=\frac{4-\sqrt{x}}{x-16}
|
slope of y+3=x
|
slope\:y+3=x
|
inverse of f(x)=2-sqrt(4-x)
|
inverse\:f(x)=2-\sqrt{4-x}
|
inverse of f(x)=sqrt(6x+5)
|
inverse\:f(x)=\sqrt{6x+5}
|
range of f(x)=4-2sqrt(2-4x)
|
range\:f(x)=4-2\sqrt{2-4x}
|
parity f(x)= x/7
|
parity\:f(x)=\frac{x}{7}
|
periodicity of 4cos(6x+(pi)/2)
|
periodicity\:4\cos(6x+\frac{\pi}{2})
|
domain of f(x)=x^2-x-9
|
domain\:f(x)=x^{2}-x-9
|
critical points of y=(xe^x-9x)/(e^x)
|
critical\:points\:y=\frac{xe^{x}-9x}{e^{x}}
|
critical points of x^8(x-3)^7
|
critical\:points\:x^{8}(x-3)^{7}
|
asymptotes of f(x)=(5(x+4))/(x^2+x-12)
|
asymptotes\:f(x)=\frac{5(x+4)}{x^{2}+x-12}
|
inverse of f(x)>= 0
|
inverse\:f(x)\ge\:0
|
inverse of f(x)=x-9
|
inverse\:f(x)=x-9
|
amplitude of f(x)= 1/5 cos(3x)
|
amplitude\:f(x)=\frac{1}{5}\cos(3x)
|
inflection points of ln(7-5x^2)
|
inflection\:points\:\ln(7-5x^{2})
|
midpoint (2,4),(1,-3)
|
midpoint\:(2,4),(1,-3)
|
amplitude of f(x)=3cos(x+(pi)/2)
|
amplitude\:f(x)=3\cos(x+\frac{\pi}{2})
|
inverse of f(x)=2pi-arcsin(1-x)
|
inverse\:f(x)=2\pi-\arcsin(1-x)
|
parity (x^2+x+1)/x
|
parity\:\frac{x^{2}+x+1}{x}
|
midpoint (6,8)(2,4)
|
midpoint\:(6,8)(2,4)
|
symmetry x^2-6x+8y+y^2=0
|
symmetry\:x^{2}-6x+8y+y^{2}=0
|
inverse of 1-x-x^2
|
inverse\:1-x-x^{2}
|
domain of h(x)=(19)/(x^2-3x)
|
domain\:h(x)=\frac{19}{x^{2}-3x}
|
inflection points of 9/x
|
inflection\:points\:\frac{9}{x}
|
domain of x^2+x
|
domain\:x^{2}+x
|
domain of (x^3+4x^2)/(7x^2-2)
|
domain\:\frac{x^{3}+4x^{2}}{7x^{2}-2}
|
parity f(x)=sin(-pi t)
|
parity\:f(x)=\sin(-\pi\:t)
|
asymptotes of f(x)= 5/(x^2+2x-3)
|
asymptotes\:f(x)=\frac{5}{x^{2}+2x-3}
|
intercepts of ((x+1)(x-3))/(x-3)
|
intercepts\:\frac{(x+1)(x-3)}{x-3}
|
intercepts of f(x)=x2-16
|
intercepts\:f(x)=x2-16
|
domain of 7-x^2
|
domain\:7-x^{2}
|
symmetry-5x^4-x^3+2x^2
|
symmetry\:-5x^{4}-x^{3}+2x^{2}
|
line (0,-4)(9,0)
|
line\:(0,-4)(9,0)
|
domain of f(x)=sqrt(25-x^2)+sqrt(x+1)
|
domain\:f(x)=\sqrt{25-x^{2}}+\sqrt{x+1}
|
domain of 1/(x-9)
|
domain\:\frac{1}{x-9}
|
inverse of 2x+6
|
inverse\:2x+6
|
domain of f(x)=(x-5)/(x^2+10x+25)
|
domain\:f(x)=\frac{x-5}{x^{2}+10x+25}
|
domain of f(x)=y=sqrt(x-4)
|
domain\:f(x)=y=\sqrt{x-4}
|
range of f(x)= 1/((x-8)^2)
|
range\:f(x)=\frac{1}{(x-8)^{2}}
|
inverse of f(x)=x^3+10
|
inverse\:f(x)=x^{3}+10
|
inverse of f(x)=3log_{2}(x)
|
inverse\:f(x)=3\log_{2}(x)
|
inverse of e^{x-1}
|
inverse\:e^{x-1}
|
domain of f(x)= 1/5 x+2
|
domain\:f(x)=\frac{1}{5}x+2
|
inverse of f(x)=15x-15
|
inverse\:f(x)=15x-15
|
domain of f(x)=3x^4
|
domain\:f(x)=3x^{4}
|
domain of f(x)=log_{5}(x+1)
|
domain\:f(x)=\log_{5}(x+1)
|
range of x^4-2x^3-x^2-2x
|
range\:x^{4}-2x^{3}-x^{2}-2x
|
extreme points of f(x)=x^3-48x+7
|
extreme\:points\:f(x)=x^{3}-48x+7
|
distance (2.5,9.2)(-0.5,6.2)
|
distance\:(2.5,9.2)(-0.5,6.2)
|
inverse of f(x)= x/2-5
|
inverse\:f(x)=\frac{x}{2}-5
|
domain of f(x)= 4/(x+9)
|
domain\:f(x)=\frac{4}{x+9}
|
range of f(x)=(3x^3+3)/(x^2-3x-4)
|
range\:f(x)=\frac{3x^{3}+3}{x^{2}-3x-4}
|
distance (-2,-4)(3,-7)
|
distance\:(-2,-4)(3,-7)
|
extreme points of 2x^2-1/(x^2)
|
extreme\:points\:2x^{2}-\frac{1}{x^{2}}
|
range of (6x)/(x+5)
|
range\:\frac{6x}{x+5}
|
inverse of f(x)=80+x
|
inverse\:f(x)=80+x
|