Upgrade to Pro
Continue to site
Solutions
Graphing
Calculators
New
Geometry
Practice
Notebook
Groups
Cheat Sheets
Sign in
Upgrade
Upgrade
Account Details
Login Options
Account Management
Settings
Subscription
Logout
No new notifications
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Popular Functions & Graphing Problems
asymptotes of-(2x)/(x^2+4)
asymptotes\:-\frac{2x}{x^{2}+4}
extreme points of xsqrt(x+1)
extreme\:points\:x\sqrt{x+1}
parity f(x)=5x^4-4x^3
parity\:f(x)=5x^{4}-4x^{3}
inverse of f(x)=(x+4)^2-4
inverse\:f(x)=(x+4)^{2}-4
inverse of f(x)=-4x-7
inverse\:f(x)=-4x-7
slope of 4x-3y=15
slope\:4x-3y=15
inverse of f(x)=(4x)/(4x-5)
inverse\:f(x)=\frac{4x}{4x-5}
intercepts of 4/(x^2+x-2)
intercepts\:\frac{4}{x^{2}+x-2}
symmetry 7y=5x^2-4
symmetry\:7y=5x^{2}-4
domain of y= 5/(x^2-1)
domain\:y=\frac{5}{x^{2}-1}
inverse of f(x)=x>= 2
inverse\:f(x)=x\ge\:2
inverse of f(x)=sqrt(x^2+2)
inverse\:f(x)=\sqrt{x^{2}+2}
intercepts of (4x+8)/(3x-2)
intercepts\:\frac{4x+8}{3x-2}
inverse of f(x)=-4x+8
inverse\:f(x)=-4x+8
range of 3^{1/x}
range\:3^{\frac{1}{x}}
asymptotes of f(x)=tan(x+((7pi)/6))
asymptotes\:f(x)=\tan(x+(\frac{7\pi}{6}))
domain of f(x)=x^2-9x+3
domain\:f(x)=x^{2}-9x+3
inverse of f(x)=(x-13)^2
inverse\:f(x)=(x-13)^{2}
range of f(x)= 4/(x^2+1)
range\:f(x)=\frac{4}{x^{2}+1}
domain of f(x)=ln|2x-3|
domain\:f(x)=\ln|2x-3|
inverse of sqrt(49-x^2)
inverse\:\sqrt{49-x^{2}}
symmetry 2(x+3)^2-1
symmetry\:2(x+3)^{2}-1
range of f(x)=x^4-2x^3+x-1
range\:f(x)=x^{4}-2x^{3}+x-1
domain of x^2-2x-15
domain\:x^{2}-2x-15
domain of f(x)=(x/(x+2))/(x/(x+2)+2)
domain\:f(x)=\frac{\frac{x}{x+2}}{\frac{x}{x+2}+2}
asymptotes of h(t)=(t^2-4t)/(t^4-256)
asymptotes\:h(t)=\frac{t^{2}-4t}{t^{4}-256}
slope intercept of 3x+12y=24
slope\:intercept\:3x+12y=24
intercepts of f(x)=3x-4
intercepts\:f(x)=3x-4
domain of f(x)=(x^3+2)^3+2
domain\:f(x)=(x^{3}+2)^{3}+2
critical points of f(x)= x/(x^2+16x+60)
critical\:points\:f(x)=\frac{x}{x^{2}+16x+60}
domain of f(x)= 1/(sqrt(x-1))
domain\:f(x)=\frac{1}{\sqrt{x-1}}
inverse of (6x-1)/(2x+5)
inverse\:\frac{6x-1}{2x+5}
domain of f(x)= 9/x
domain\:f(x)=\frac{9}{x}
domain of g(x)=(x^2)/(x-4)
domain\:g(x)=\frac{x^{2}}{x-4}
inverse of f(x)= 1/2 x+6
inverse\:f(x)=\frac{1}{2}x+6
intercepts of f(x)=(3x^2)/(x^2-16)
intercepts\:f(x)=\frac{3x^{2}}{x^{2}-16}
inverse of f(x)=x^2-8x+16
inverse\:f(x)=x^{2}-8x+16
domain of f(x)=(2x^2-x-6)/(x^2+9)
domain\:f(x)=\frac{2x^{2}-x-6}{x^{2}+9}
extreme points of (x^{12})/(x^{-2)}
extreme\:points\:\frac{x^{12}}{x^{-2}}
inverse of y=7^x
inverse\:y=7^{x}
inflection points of x^3(x+5)^2+5
inflection\:points\:x^{3}(x+5)^{2}+5
parity cos(5x)
parity\:\cos(5x)
domain of 4x+5
domain\:4x+5
inverse of 15x^3-14
inverse\:15x^{3}-14
intercepts of y=-3x
intercepts\:y=-3x
domain of f(x)=6x-6
domain\:f(x)=6x-6
symmetry x^2+y^2+2x-8y+1=0
symmetry\:x^{2}+y^{2}+2x-8y+1=0
inverse of f(x)=(3x+1)/(x-7)
inverse\:f(x)=\frac{3x+1}{x-7}
perpendicular 3x+y=-6
perpendicular\:3x+y=-6
inverse of ln(x)0.1771
inverse\:\ln(x)0.1771
intercepts of x^4-4x^3-x^2+14x+10
intercepts\:x^{4}-4x^{3}-x^{2}+14x+10
slope of-2x+3y=0
slope\:-2x+3y=0
domain of f(x)=17e^{(x+3)}-8
domain\:f(x)=17e^{(x+3)}-8
critical points of (3x)/(x^2-1)
critical\:points\:\frac{3x}{x^{2}-1}
domain of f(x)=5sqrt(x+3)
domain\:f(x)=5\sqrt{x+3}
range of g(x)=x^2-5
range\:g(x)=x^{2}-5
intercepts of (x^2-x-6)/(x^2-25)
intercepts\:\frac{x^{2}-x-6}{x^{2}-25}
y=-x^2+4
y=-x^{2}+4
slope of 4/3 ,\at (-4,-9)
slope\:\frac{4}{3},\at\:(-4,-9)
domain of f(x)=(sqrt(x+3))/(x-7)
domain\:f(x)=\frac{\sqrt{x+3}}{x-7}
domain of sqrt(2-\sqrt{x)}
domain\:\sqrt{2-\sqrt{x}}
domain of-(19)/((6+t)^2)
domain\:-\frac{19}{(6+t)^{2}}
y=2cos(x)
y=2\cos(x)
inverse of f(x)=-4(x+10)^2+6
inverse\:f(x)=-4(x+10)^{2}+6
range of f(x)=(|x-2|+|x+2|)/x
range\:f(x)=\frac{|x-2|+|x+2|}{x}
inverse of f(x)=ln(3x+7)
inverse\:f(x)=\ln(3x+7)
f(x)=sin(x)
f(x)=\sin(x)
intercepts of f(x)=(x^3)/(x^2-9)
intercepts\:f(x)=\frac{x^{3}}{x^{2}-9}
parity x^2-3
parity\:x^{2}-3
inverse of f(x)=(x-1)/(x+5)
inverse\:f(x)=\frac{x-1}{x+5}
inverse of sqrt(5-x)+1
inverse\:\sqrt{5-x}+1
domain of f(x)=(sqrt(2x-5))/(x^2-5x+4)
domain\:f(x)=\frac{\sqrt{2x-5}}{x^{2}-5x+4}
parity 1/(x^3-5x^2+3x-1)
parity\:\frac{1}{x^{3}-5x^{2}+3x-1}
intercepts of f(x)=x^2+64
intercepts\:f(x)=x^{2}+64
shift 5sin(4x-pi)
shift\:5\sin(4x-\pi)
monotone intervals (x^2-x)/(x^2+2x)
monotone\:intervals\:\frac{x^{2}-x}{x^{2}+2x}
domain of f(x)=sqrt(x^2+8)
domain\:f(x)=\sqrt{x^{2}+8}
domain of (x^2+1)/x
domain\:\frac{x^{2}+1}{x}
domain of f(x)=sqrt(((x+1)(x-1))/x)
domain\:f(x)=\sqrt{\frac{(x+1)(x-1)}{x}}
domain of (x+2)^2(x-1)
domain\:(x+2)^{2}(x-1)
asymptotes of f(x)=(x^3)/((1+x)^2)
asymptotes\:f(x)=\frac{x^{3}}{(1+x)^{2}}
inverse of f(x)= 1/2 (x-1)^3+3
inverse\:f(x)=\frac{1}{2}(x-1)^{3}+3
inflection points of y=x^3+3x^2+3x+2
inflection\:points\:y=x^{3}+3x^{2}+3x+2
parity f(x)=2x^3-4x
parity\:f(x)=2x^{3}-4x
slope of y= 1/4 x
slope\:y=\frac{1}{4}x
range of f(x)=sqrt(3x-1)
range\:f(x)=\sqrt{3x-1}
extreme points of f(x)=ln(6x^2-6x-11)
extreme\:points\:f(x)=\ln(6x^{2}-6x-11)
slope of y= 1/3 x-1
slope\:y=\frac{1}{3}x-1
critical points of x/(x^2+12x+32)
critical\:points\:\frac{x}{x^{2}+12x+32}
perpendicular 5x+6y=7
perpendicular\:5x+6y=7
range of (x^2-1)/(x-1)
range\:\frac{x^{2}-1}{x-1}
slope of =2(-1,4)
slope\:=2(-1,4)
inverse of f(x)=(x+1)/x
inverse\:f(x)=\frac{x+1}{x}
domain of sqrt(3-x)-sqrt(x^2-1)
domain\:\sqrt{3-x}-\sqrt{x^{2}-1}
inverse of f(x)=4^{x+1}-3
inverse\:f(x)=4^{x+1}-3
intercepts of x^2+x-2
intercepts\:x^{2}+x-2
inverse of f(x)=-6cos(5x)
inverse\:f(x)=-6\cos(5x)
inverse of f(x)=ln(x^2)-9,x<= 0
inverse\:f(x)=\ln(x^{2})-9,x\le\:0
domain of f(x)=sqrt(-x-1)
domain\:f(x)=\sqrt{-x-1}
inverse of f(x)=\sqrt[4]{x+3}
inverse\:f(x)=\sqrt[4]{x+3}
1
..
442
443
444
445
446
447
448
..
1339
We want your feedback
(optional)
(optional)
Please add a message.
Message received. Thanks for the feedback.
Cancel
Send
Generating PDF...
Feedback