distance (-7,8)(-1,1)
|
distance\:(-7,8)(-1,1)
|
extreme points of y=x^2-4
|
extreme\:points\:y=x^{2}-4
|
domain of f(x)=ln(2x)
|
domain\:f(x)=\ln(2x)
|
inverse of 1/(x-1)
|
inverse\:\frac{1}{x-1}
|
midpoint (3,5)(-7,-7)
|
midpoint\:(3,5)(-7,-7)
|
inverse of f(x)=(x+1)^5-1
|
inverse\:f(x)=(x+1)^{5}-1
|
intercepts of f(x)=x^2+y-25=0
|
intercepts\:f(x)=x^{2}+y-25=0
|
range of 12sqrt(p)
|
range\:12\sqrt{p}
|
inverse of f(x)= 2/(x+2)
|
inverse\:f(x)=\frac{2}{x+2}
|
domain of f(x)=sqrt(-2x-1)
|
domain\:f(x)=\sqrt{-2x-1}
|
inverse of f(x)=(3,2)
|
inverse\:f(x)=(3,2)
|
asymptotes of f(x)=cos(x)-x
|
asymptotes\:f(x)=\cos(x)-x
|
range of f(x)=(x-2)^2+4
|
range\:f(x)=(x-2)^{2}+4
|
range of x/(x^2-9)
|
range\:\frac{x}{x^{2}-9}
|
line (4,-8)(8,5)
|
line\:(4,-8)(8,5)
|
domain of f(x)= 6/(x-1)
|
domain\:f(x)=\frac{6}{x-1}
|
perpendicular y=-7x,(35,12)
|
perpendicular\:y=-7x,(35,12)
|
asymptotes of f(x)= x/(x^2)
|
asymptotes\:f(x)=\frac{x}{x^{2}}
|
inverse of sin(theta)
|
inverse\:\sin(\theta)
|
shift f(x)=y= 1/8 tan(x)
|
shift\:f(x)=y=\frac{1}{8}\tan(x)
|
domain of (14x+48)/(x(x+8))
|
domain\:\frac{14x+48}{x(x+8)}
|
inverse of f(x)=6x-x^2,x< 4
|
inverse\:f(x)=6x-x^{2},x\lt\:4
|
domain of f(x)=sqrt(-x+8)
|
domain\:f(x)=\sqrt{-x+8}
|
f(x)=(x-1)^2
|
f(x)=(x-1)^{2}
|
arcsin(x)
|
\arcsin(x)
|
domain of (x-2)-(x^2-4)
|
domain\:(x-2)-(x^{2}-4)
|
line (2,1),(2,4)
|
line\:(2,1),(2,4)
|
inverse of-1/2 x^5
|
inverse\:-\frac{1}{2}x^{5}
|
symmetry 1/(x-2)-3
|
symmetry\:\frac{1}{x-2}-3
|
parity x^2-ln(tan(x))
|
parity\:x^{2}-\ln(\tan(x))
|
symmetry y=x^2-4
|
symmetry\:y=x^{2}-4
|
domain of f(x)=ln((x-1)/(x+3))
|
domain\:f(x)=\ln(\frac{x-1}{x+3})
|
inflection points of f(x)=(x^2-4)/(2x-3)
|
inflection\:points\:f(x)=\frac{x^{2}-4}{2x-3}
|
inverse of (5x+2)/(x-3)
|
inverse\:\frac{5x+2}{x-3}
|
domain of f(x)=sqrt(2x+8)
|
domain\:f(x)=\sqrt{2x+8}
|
domain of log_{2}(x-1)
|
domain\:\log_{2}(x-1)
|
range of f(x)=-1/2 sqrt(x)-3
|
range\:f(x)=-\frac{1}{2}\sqrt{x}-3
|
intercepts of f(x)=y=4-35x
|
intercepts\:f(x)=y=4-35x
|
inverse of f(x)=sqrt(x-11)
|
inverse\:f(x)=\sqrt{x-11}
|
asymptotes of f(x)=(x^2-x-6)/(x^2-3x-10)
|
asymptotes\:f(x)=\frac{x^{2}-x-6}{x^{2}-3x-10}
|
intercepts of f(y)=2x+3y=6
|
intercepts\:f(y)=2x+3y=6
|
domain of x^3+6
|
domain\:x^{3}+6
|
intercepts of (x-1)/(x^2-x-6)
|
intercepts\:\frac{x-1}{x^{2}-x-6}
|
range of sqrt(x^2-5x+6)
|
range\:\sqrt{x^{2}-5x+6}
|
inverse of f(x)=-x^3-1
|
inverse\:f(x)=-x^{3}-1
|
critical points of s^3
|
critical\:points\:s^{3}
|
periodicity of f(x)=4cos(x)
|
periodicity\:f(x)=4\cos(x)
|
domain of f(x)=(x+2)/(1-x)
|
domain\:f(x)=\frac{x+2}{1-x}
|
asymptotes of f(x)=(x^2)/((x-1))
|
asymptotes\:f(x)=\frac{x^{2}}{(x-1)}
|
midpoint (3,5)(-2,8)
|
midpoint\:(3,5)(-2,8)
|
parallel y=9x,\at (-9,7)
|
parallel\:y=9x,\at\:(-9,7)
|
domain of (-5-4x)/(7x-2)
|
domain\:\frac{-5-4x}{7x-2}
|
range of (sqrt(2+x))/(x-5)
|
range\:\frac{\sqrt{2+x}}{x-5}
|
inverse of-3x-9
|
inverse\:-3x-9
|
range of x^2-3x-4
|
range\:x^{2}-3x-4
|
domain of f(x)= 1/(3x)
|
domain\:f(x)=\frac{1}{3x}
|
line (5.13e^{1.14j})^2
|
line\:(5.13e^{1.14j})^{2}
|
intercepts of 8x^2-x+1
|
intercepts\:8x^{2}-x+1
|
extreme points of f(x)=x^2+2
|
extreme\:points\:f(x)=x^{2}+2
|
domain of sqrt(-x)+7
|
domain\:\sqrt{-x}+7
|
inflection points of (e^x)/(4+e^x)
|
inflection\:points\:\frac{e^{x}}{4+e^{x}}
|
slope intercept of 5x+5y=15
|
slope\:intercept\:5x+5y=15
|
extreme points of f(x)= 5/4 x^2-12x+34
|
extreme\:points\:f(x)=\frac{5}{4}x^{2}-12x+34
|
domain of f(x)=(sqrt(x+2))/(x^2-2x-8)
|
domain\:f(x)=\frac{\sqrt{x+2}}{x^{2}-2x-8}
|
extreme points of f(x)=-x^3-3x^2-1
|
extreme\:points\:f(x)=-x^{3}-3x^{2}-1
|
inverse of f(x)=7x^3-4
|
inverse\:f(x)=7x^{3}-4
|
perpendicular y=-5/2 x+4
|
perpendicular\:y=-\frac{5}{2}x+4
|
slope of 8x+6y=-4
|
slope\:8x+6y=-4
|
line 13=0*16+b
|
line\:13=0\cdot\:16+b
|
range of y=x^2+4
|
range\:y=x^{2}+4
|
asymptotes of f(x)=(x^3+6x^2+9x)/(x+3)
|
asymptotes\:f(x)=\frac{x^{3}+6x^{2}+9x}{x+3}
|
monotone intervals f(x)=-0.75x^4+15x^3
|
monotone\:intervals\:f(x)=-0.75x^{4}+15x^{3}
|
asymptotes of f(x)=(x^2-1)/(x^2+x-6)
|
asymptotes\:f(x)=\frac{x^{2}-1}{x^{2}+x-6}
|
domain of f(x)=arcsin(e^{x^2+x-2})
|
domain\:f(x)=\arcsin(e^{x^{2}+x-2})
|
inflection points of (x^3)/3-x^2-3x
|
inflection\:points\:\frac{x^{3}}{3}-x^{2}-3x
|
inverse of 1/2 x-2
|
inverse\:\frac{1}{2}x-2
|
domain of f(x)=(\sqrt[3]{x})/(x^2+1)
|
domain\:f(x)=\frac{\sqrt[3]{x}}{x^{2}+1}
|
inverse of f(x)=2x^{1/5}-3
|
inverse\:f(x)=2x^{\frac{1}{5}}-3
|
domain of f(x)=(x-3)/(x+3)
|
domain\:f(x)=\frac{x-3}{x+3}
|
asymptotes of (3x^3-30x+76)/(x^2-10x+25)
|
asymptotes\:\frac{3x^{3}-30x+76}{x^{2}-10x+25}
|
inverse of f(x)=3e^{x-2}
|
inverse\:f(x)=3e^{x-2}
|
slope of 3x^2-6x-9=0
|
slope\:3x^{2}-6x-9=0
|
extreme points of f(x)=3\sqrt[3]{x}-x
|
extreme\:points\:f(x)=3\sqrt[3]{x}-x
|
inverse of 1-1/(1-x)
|
inverse\:1-\frac{1}{1-x}
|
inverse of 3sqrt(x)+5
|
inverse\:3\sqrt{x}+5
|
range of f(x)=x^2-5
|
range\:f(x)=x^{2}-5
|
monotone intervals x^2+1
|
monotone\:intervals\:x^{2}+1
|
domain of f(x)= 2/(6-5x)
|
domain\:f(x)=\frac{2}{6-5x}
|
domain of f(x)=(x-1)/(x^2-x)
|
domain\:f(x)=\frac{x-1}{x^{2}-x}
|
inverse of f(x)=sqrt(4x+5)
|
inverse\:f(x)=\sqrt{4x+5}
|
distance (-6,-7)(0,0)
|
distance\:(-6,-7)(0,0)
|
inverse of sqrt(4-y^2)+1
|
inverse\:\sqrt{4-y^{2}}+1
|
asymptotes of (2e^x)/(e^x-5)
|
asymptotes\:\frac{2e^{x}}{e^{x}-5}
|
domain of f(x)= 4/(4+x)
|
domain\:f(x)=\frac{4}{4+x}
|
domain of f(x)=7ln(x)
|
domain\:f(x)=7\ln(x)
|
f(x)= x/(x+1)
|
f(x)=\frac{x}{x+1}
|
inverse of y= 1/2 x+3
|
inverse\:y=\frac{1}{2}x+3
|
asymptotes of f(x)=-4/(x^2-3x)
|
asymptotes\:f(x)=-\frac{4}{x^{2}-3x}
|
domain of 17-x^6
|
domain\:17-x^{6}
|
asymptotes of f(x)=((-3x-9))/(x^2-x-12)
|
asymptotes\:f(x)=\frac{(-3x-9)}{x^{2}-x-12}
|